BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32362670)

  • 1. Compounded Topical Amitriptyline for Neuropathic Pain: In Vitro Release from Compounding Bases and Potential Correlation with Clinical Efficacy.
    Shakshuki A; Yeung P; Agu RU
    Can J Hosp Pharm; 2020; 73(2):133-140. PubMed ID: 32362670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compounded Topical Gabapentin for Neuropathic Pain: Does Choice of Base Affect Efficacy?
    Shakshuki A; Agu RU
    Int J Pharm Compd; 2019; 23(6):496-503. PubMed ID: 31751946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability Assessment of Topical Amitriptyline Extemporaneously Compounded with Lipoderm Base, PLO Gel Mediflo 30, and Emollient Cream.
    Shakshuki A; Agu RU
    Int J Pharm Compd; 2019; 23(1):82-87. PubMed ID: 30668540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Permeability, Irritability, and Release Evaluation of Commonly Used Topical Diclofenac Gel Preparations (1%, 5%, and 10%).
    Kohan HG; Baker DM; Sani S; Bielecki-Wilken KA; Ramirez A
    Int J Pharm Compd; 2021; 25(2):146-155. PubMed ID: 33798114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin Permeation and Antinociception of Compounded Topical Cyclobenzaprine Hydrochloride Formulations.
    Bryson E; Hartman R; Arnold J; Gorman G; Sweitzer S; Asbill S
    Int J Pharm Compd; 2015; 19(2):161-6. PubMed ID: 26685496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compounded gabapentin for neuropathic pain: Stability and beyond-use date (BUD) in some commonly used bases.
    Shakshuki A; Yeung P; Agu RU
    J Am Pharm Assoc (2003); 2019; 59(4):514-520. PubMed ID: 30979575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the percutaneous absorption of promethazine hydrochloride, in vitro, using the human ex vivo skin model.
    Bassani AS; Banov D; Lehman PA
    Int J Pharm Compd; 2008; 12(3):270-3. PubMed ID: 23969717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the chemical and physical stability of ketoprofen compounded in various pharmaceutical bases on its topical and transdermal delivery.
    Nornoo AO; Wulz J; Yoon H; Nan Y; Lese M
    Pharm Dev Technol; 2016 Mar; 21(2):204-13. PubMed ID: 25431959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Percutaneous Absorption of Ketamine HCl, Gabapentin, Clonidine HCl, and Baclofen, in Compounded Transdermal Pain Formulations, Using the Franz Finite Dose Model.
    Bassani AS; Banov D
    Pain Med; 2016 Feb; 17(2):230-8. PubMed ID: 26352507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Percutaneous Absorption of Ketoprofen Using the Franz Skin Finite Dose Model.
    Bassani AS; Banov D; Phan H
    Postgrad Med; 2016; 128(2):262-7. PubMed ID: 26788899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin permeation and antinociception of topical gabapentin formulations.
    Bryson E; Asbill S; Sweitzer S
    Int J Pharm Compd; 2014; 18(6):504-11. PubMed ID: 25906628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Transdermal Drug Permeation as Modulated by Lipoderm and Pluronic Lecithin Organogel.
    Zhang Q; Song Y; Page SW; Garg S
    J Pharm Sci; 2018 Feb; 107(2):587-594. PubMed ID: 28935590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of in vitro transdermal permeation, mass spectrometric imaging, and in vivo analgesic effects of pregabalin using a pluronic lecithin organogel formulation in mice.
    Nagao M; Tajima M; Sugiyama E; Shinouchi R; Shibata K; Yoshikawa M; Yamamoto T; Sato VH; Nobe K; Sato H
    Pharmacol Res Perspect; 2022 Apr; 10(2):e00919. PubMed ID: 35306752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement.
    Aboofazeli R; Zia H; Needham TE
    Drug Deliv; 2002; 9(4):239-47. PubMed ID: 12511202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Compounded Transdermal Analgesic Formulations Using the Franz Finite Dose Model.
    Baneshi M; Tyagi D; Panneerselvam E; MacKenzie G; Coleman J; Zhang SX
    Int J Pharm Compd; 2023; 27(5):424-430. PubMed ID: 37816184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycophenolic Acid for Topical Immunosuppression in Vascularized Composite Allotransplantation: Optimizing Formulation and Preliminary Evaluation of Bioavailability and Pharmacokinetics.
    Feturi FG; Weinstock M; Zhao W; Zhang W; Schnider JT; Erbas VE; Oksuz S; Plock JA; Rohan L; Spiess AM; Ferreira LM; Solari MG; Venkataramanan R; Gorantla VS
    Front Surg; 2018; 5():20. PubMed ID: 29868602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a compounding phospholipid base for the percutaneous absorption of high molecular weight drugs using the Franz finite dose model.
    Banov D; Song G; Carvalho M; Bassani AS; Valdez BC
    Skin Res Technol; 2024 Feb; 30(2):e13610. PubMed ID: 38352988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the percutaneous absorption of chlorpromazine from PLO gels across porcine ear and human abdominal skin.
    Alsaab H; Alzhrani RM; Boddu SH
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1258-66. PubMed ID: 26599694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Evaluation of Topical Gabapentin Formulations.
    Martin CJ; Alcock N; Hiom S; Birchall JC
    Pharmaceutics; 2017 Aug; 9(3):. PubMed ID: 28867811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine.
    Ba W; Li Z; Wang L; Wang D; Liao W; Fan W; Wu Y; Liao F; Yu J
    Pharm Dev Technol; 2016 Aug; 21(5):535-45. PubMed ID: 25757643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.