These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 32362867)

  • 1. The Regulation of microRNAs in Alzheimer's Disease.
    Kou X; Chen D; Chen N
    Front Neurol; 2020; 11():288. PubMed ID: 32362867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities.
    Abuelezz NZ; Nasr FE; AbdulKader MA; Bassiouny AR; Zaky A
    Front Aging Neurosci; 2021; 13():743573. PubMed ID: 34712129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs in Alzheimer's Disease: Diagnostic Markers or Therapeutic Agents?
    Angelucci F; Cechova K; Valis M; Kuca K; Zhang B; Hort J
    Front Pharmacol; 2019; 10():665. PubMed ID: 31275145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alzheimer's Disease and microRNA-132: A Widespread Pathological Factor and Potential Therapeutic Target.
    Zhang M; Bian Z
    Front Neurosci; 2021; 15():687973. PubMed ID: 34108863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms.
    Dehghani R; Rahmani F; Rezaei N
    Rev Neurosci; 2018 Feb; 29(2):161-182. PubMed ID: 28941357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potential Role of miRNA-Regulated Autophagy in Alzheimer's Disease.
    Zhang H; Liang J; Chen N
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review.
    Millan MJ
    Prog Neurobiol; 2017 Sep; 156():1-68. PubMed ID: 28322921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications.
    Uddin MS; Stachowiak A; Mamun AA; Tzvetkov NT; Takeda S; Atanasov AG; Bergantin LB; Abdel-Daim MM; Stankiewicz AM
    Front Aging Neurosci; 2018; 10():04. PubMed ID: 29441009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease.
    Pinheiro L; Faustino C
    Curr Alzheimer Res; 2019; 16(5):418-452. PubMed ID: 30907320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal Predictive Relationships between Amyloid and Tau Biomarkers in Alzheimer's Disease Progression: An Empirical Model.
    Krance SH; Cogo-Moreira H; Rabin JS; Black SE; Swardfager W;
    J Neurosci; 2019 Sep; 39(37):7428-7437. PubMed ID: 31350262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursor-Independent Overproduction of Beta-Amyloid in AD: Mitochondrial Dysfunction as Possible Initiator of Asymmetric RNA-Dependent βAPP mRNA Amplification. An Engine that Drives Alzheimer's Disease.
    Volloch V; Olsen BR; Rits S
    Ann Integr Mol Med; 2019; 1(1):61-74. PubMed ID: 31858090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Autophagy for the Treatment of Alzheimer's Disease: Challenges and Opportunities.
    Liu J; Li L
    Front Mol Neurosci; 2019; 12():203. PubMed ID: 31507373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice.
    Hernandez-Rapp J; Rainone S; Goupil C; Dorval V; Smith PY; Saint-Pierre M; Vallée M; Planel E; Droit A; Calon F; Cicchetti F; Hébert SS
    Sci Rep; 2016 Aug; 6():30953. PubMed ID: 27484949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key Peptides and Proteins in Alzheimer's Disease.
    Penke B; Bogár F; Paragi G; Gera J; Fülöp L
    Curr Protein Pept Sci; 2019; 20(6):577-599. PubMed ID: 30605056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers.
    Zhang Y; Zhao Y; Ao X; Yu W; Zhang L; Wang Y; Chang W
    Front Aging Neurosci; 2021; 13():654978. PubMed ID: 34276336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.
    Zueva IV; Semenov VE; Mukhamedyarov MA; Lushchekina SV; Kharlamova AD; Petukhova EO; Mikhailov AS; Podyachev SN; Saifina LF; Petrov KA; Minnekhanova OA; Zobov VV; Nikolsky EE; Masson P; Reznik VS
    Int J Risk Saf Med; 2015; 27 Suppl 1():S69-71. PubMed ID: 26639718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Protective Role of microRNA-200c in Alzheimer's Disease Pathologies Is Induced by Beta Amyloid-Triggered Endoplasmic Reticulum Stress.
    Wu Q; Ye X; Xiong Y; Zhu H; Miao J; Zhang W; Wan J
    Front Mol Neurosci; 2016; 9():140. PubMed ID: 28008308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.