BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32363853)

  • 1. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics.
    Howard CJ; Floyd BM; Bardo AM; Swaminathan J; Marcotte EM; Anslyn EV
    ACS Chem Biol; 2020 Jun; 15(6):1401-1407. PubMed ID: 32363853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics.
    Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048
    [No Abstract]   [Full Text] [Related]  

  • 3. Integrated solid-phase extraction-capillary liquid chromatography (speLC) interfaced to ESI-MS/MS for fast characterization and quantification of protein and proteomes.
    Falkenby LG; Such-Sanmartín G; Larsen MR; Vorm O; Bache N; Jensen ON
    J Proteome Res; 2014 Dec; 13(12):6169-75. PubMed ID: 25277625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer.
    Kelstrup CD; Jersie-Christensen RR; Batth TS; Arrey TN; Kuehn A; Kellmann M; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6187-95. PubMed ID: 25349961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling.
    Chen W; Adhikari S; Chen L; Lin L; Li H; Luo S; Yang P; Tian R
    J Chromatogr A; 2017 May; 1498():207-214. PubMed ID: 28126229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single glomerular proteomics: A novel tool for translational glomerular cell biology.
    Rinschen MM
    Methods Cell Biol; 2019; 154():1-14. PubMed ID: 31493812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics.
    Kaleja P; Helbig AO; Tholey A
    J Proteome Res; 2019 Jul; 18(7):2954-2964. PubMed ID: 31195796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute quantification strategies in proteomics based on mass spectrometry.
    Brönstrup M
    Expert Rev Proteomics; 2004 Dec; 1(4):503-12. PubMed ID: 15966845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis.
    Davis S; Charles PD; He L; Mowlds P; Kessler BM; Fischer R
    J Proteome Res; 2017 Mar; 16(3):1288-1299. PubMed ID: 28164708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale.
    Kaur U; Meng H; Lui F; Ma R; Ogburn RN; Johnson JHR; Fitzgerald MC; Jones LM
    J Proteome Res; 2018 Nov; 17(11):3614-3627. PubMed ID: 30222357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional proteomics at the N-terminus as a means of proteome simplification.
    Davidson GR; Armstrong SD; Beynon RJ
    Methods Mol Biol; 2011; 753():229-42. PubMed ID: 21604126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements.
    Qian C; Hettich RL
    J Proteome Res; 2017 Jul; 16(7):2537-2546. PubMed ID: 28537741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latest developments in sample treatment for 18O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review.
    Capelo JL; Carreira RJ; Fernandes L; Lodeiro C; Santos HM; Simal-Gandara J
    Talanta; 2010 Feb; 80(4):1476-86. PubMed ID: 20082805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Settings of Mass Spectrometry Open Search Strategy for Higher Confidence.
    Li D; Lu S; Liu W; Zhao X; Mai Z; Zhang G
    J Proteome Res; 2018 Nov; 17(11):3719-3729. PubMed ID: 30265008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample Clean-up Strategies for ESI Mass Spectrometry Applications in Bottom-up Proteomics: Trends from 2012 to 2016.
    Tubaon RM; Haddad PR; Quirino JP
    Proteomics; 2017 Oct; 17(20):. PubMed ID: 28271630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal protein characterization by mass spectrometry using combined microscale liquid and solid-phase derivatization.
    Nika H; Angeletti RH; Hawke DH
    J Biomol Tech; 2014 Sep; 25(3):77-86. PubMed ID: 25187758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.
    Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X
    Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.