BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32363854)

  • 1. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides.
    Zhu Y; Wu J; Han L; Wang X; Li W; Guo H; Wei H
    Anal Chem; 2020 Jun; 92(11):7444-7452. PubMed ID: 32363854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A colorimetric sensor array based on nanoceria crosslinked and heteroatom-doped graphene oxide nanoribbons for the detection and discrimination of multiple pesticides.
    Tai S; Wang J; Sun F; Pan Q; Peng C; Wang Z
    Anal Chim Acta; 2023 Dec; 1283():341929. PubMed ID: 37977774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algae-derived biochar nanozyme array for discrimination and detection of multiple pesticides in soil, water and food.
    Yue N; Wu J; Qi W; Su R
    Food Chem; 2024 Apr; 438():137946. PubMed ID: 37976876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of L-cysteine.
    Liu C; Zhao Y; Xu D; Zheng X; Huang Q
    Anal Bioanal Chem; 2021 Jun; 413(15):4013-4022. PubMed ID: 33961104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold alloy-based nanozyme sensor arrays for biothiol detection.
    Lin J; Wang Q; Wang X; Zhu Y; Zhou X; Wei H
    Analyst; 2020 Jun; 145(11):3916-3921. PubMed ID: 32301943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array.
    Tian T; Song D; Zhang L; Huang H; Li Y
    J Hazard Mater; 2024 May; 469():133847. PubMed ID: 38422731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel strategy for identification of pesticides in different categories by concentration-independent model based on a nanozyme with multienzyme-like activities.
    Song D; Lei L; Tian T; Yang X; Wang L; Li Y; Huang H
    Biosens Bioelectron; 2023 Oct; 237():115458. PubMed ID: 37311405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-assisted colorimetric biosensor for the determination of organophosphorus pesticides on the peel of fruits.
    Li D; Li J; Wu C; Liu H; Zhao M; Shi H; Zhang Y; Wang T
    Food Chem; 2024 Jun; 443():138459. PubMed ID: 38306911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells.
    Wang X; Qin L; Zhou M; Lou Z; Wei H
    Anal Chem; 2018 Oct; 90(19):11696-11702. PubMed ID: 30175585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D-Metal-Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis.
    Qin L; Wang X; Liu Y; Wei H
    Anal Chem; 2018 Aug; 90(16):9983-9989. PubMed ID: 30044077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition.
    Qiu H; Pu F; Ran X; Liu C; Ren J; Qu X
    Anal Chem; 2018 Oct; 90(20):11775-11779. PubMed ID: 30264986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile colorimetric sensor for ultrasensitive and selective detection of Lead(II) in environmental and biological samples based on intrinsic peroxidase-mimic activity of WS
    Tang Y; Hu Y; Yang Y; Liu B; Wu Y
    Anal Chim Acta; 2020 Apr; 1106():115-125. PubMed ID: 32145839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colorimetric sensor array based on sulfuric acid assisted KMnO
    Qiao L; Qian S; Wang Y; Lin H
    Talanta; 2018 May; 181():305-310. PubMed ID: 29426516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions.
    Noreldeen HAA; Yang L; Guo XY; He SB; Peng HP; Deng HH; Chen W
    Analyst; 2021 Dec; 147(1):101-108. PubMed ID: 34846387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide-based colorimetric detection of organophosphorus pesticides via a multi-enzyme cascade reaction.
    Chu S; Huang W; Shen F; Li T; Li S; Xu W; Lv C; Luo Q; Liu J
    Nanoscale; 2020 Mar; 12(10):5829-5833. PubMed ID: 32129411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous chitosan/partially reduced graphene oxide/diatomite composite as an efficient adsorbent for quantitative colorimetric detection of pesticides in a complex matrix.
    Ma G; Cao J; Hu G; Zhu L; Chen H; Zhang X; Liu J; Ji J; Liu X; Lu C
    Analyst; 2021 Jul; 146(14):4576-4584. PubMed ID: 34152332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peony-like 3D-MoS
    Lv Q; Chen LS; Liu HX; Zou LL
    Talanta; 2022 Sep; 247():123553. PubMed ID: 35688100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione‑iron hybrid nanozyme-based colorimetric sensor for specific and stable detection of thiram pesticide on fruit juices.
    Yan X; Zou R; Lin Q; Ma Y; Li A; Sun X; Lu G; Li H
    Food Chem; 2024 Sep; 452():139569. PubMed ID: 38744131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker.
    Ruan X; Liu D; Niu X; Wang Y; Simpson CD; Cheng N; Du D; Lin Y
    Anal Chem; 2019 Nov; 91(21):13847-13854. PubMed ID: 31575114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphdiyne oxide: a new carbon nanozyme.
    Ma W; Xue Y; Guo S; Jiang Y; Wu F; Yu P; Mao L
    Chem Commun (Camb); 2020 May; 56(38):5115-5118. PubMed ID: 32319464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.