BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32363862)

  • 1. Structural and Functional Adaptability of Sucrose and Lactose Permeases from
    Vitrac H; Mallampalli VKPS; Azinas S; Dowhan W
    Biochemistry; 2020 May; 59(19):1854-1868. PubMed ID: 32363862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar recognition by CscB and LacY.
    Sugihara J; Smirnova I; Kasho V; Kaback HR
    Biochemistry; 2011 Dec; 50(51):11009-14. PubMed ID: 22106930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease.
    Vadyvaloo V; Smirnova IN; Kasho VN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1051-9. PubMed ID: 16574149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli.
    Bogdanov M; Heacock P; Guan Z; Dowhan W
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15057-62. PubMed ID: 20696931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli.
    Vitrac H; Bogdanov M; Dowhan W
    J Biol Chem; 2013 Feb; 288(8):5873-85. PubMed ID: 23322771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
    Martens C; Shekhar M; Borysik AJ; Lau AM; Reading E; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2018 Oct; 9(1):4151. PubMed ID: 30297844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibody 4B1 influences the pK
    Omeis F; Santos Seica AF; Ermolova N; Kaback HR; Hellwig P
    FEBS Lett; 2020 Oct; 594(20):3356-3362. PubMed ID: 32780424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing a lipid-dependent alteration in single lactose permeases.
    Serdiuk T; Sugihara J; Mari SA; Kaback HR; Müller DJ
    Structure; 2015 Apr; 23(4):754-61. PubMed ID: 25800555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology.
    Bogdanov M; Xie J; Heacock P; Dowhan W
    J Cell Biol; 2008 Sep; 182(5):925-35. PubMed ID: 18779371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease.
    Xie J; Bogdanov M; Heacock P; Dowhan W
    J Biol Chem; 2006 Jul; 281(28):19172-8. PubMed ID: 16698795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-dependent generation of dual topology for a membrane protein.
    Bogdanov M; Dowhan W
    J Biol Chem; 2012 Nov; 287(45):37939-48. PubMed ID: 22969082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YidC assists the stepwise and stochastic folding of membrane proteins.
    Serdiuk T; Balasubramaniam D; Sugihara J; Mari SA; Kaback HR; Müller DJ
    Nat Chem Biol; 2016 Nov; 12(11):911-917. PubMed ID: 27595331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition.
    Bogdanov M; Heacock PN; Dowhan W
    EMBO J; 2002 May; 21(9):2107-16. PubMed ID: 11980707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-induced changes in the structural properties of LacY.
    Serdiuk T; Madej MG; Sugihara J; Kawamura S; Mari SA; Kaback HR; Müller DJ
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):E1571-80. PubMed ID: 24711390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of the lactose permease.
    Kaback HR
    C R Biol; 2005 Jun; 328(6):557-67. PubMed ID: 15950162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles.
    Vitrac H; Mallampalli VKPS; Bogdanov M; Dowhan W
    Sci Rep; 2019 Aug; 9(1):11338. PubMed ID: 31383935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions.
    Vitrac H; Bogdanov M; Heacock P; Dowhan W
    J Biol Chem; 2011 Apr; 286(17):15182-94. PubMed ID: 21454589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.