These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32364015)

  • 1. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds.
    Carnes ME; Gonyea CR; Mooney RG; Njihia JW; Coburn JM; Pins GD
    Tissue Eng Part C Methods; 2020 Jun; 26(6):317-331. PubMed ID: 32364015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Sterilization Methods on the Structural and Chemical Properties of Fibrin Microthread Scaffolds.
    Grasman JM; O'Brien MP; Ackerman K; Gagnon KA; Wong GM; Pins GD
    Macromol Biosci; 2016 Jun; 16(6):836-46. PubMed ID: 26847494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static axial stretching enhances the mechanical properties and cellular responses of fibrin microthreads.
    Grasman JM; Pumphrey LM; Dunphy M; Perez-Rogers J; Pins GD
    Acta Biomater; 2014 Oct; 10(10):4367-76. PubMed ID: 24954911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable hydrogel systems crosslinked by horseradish peroxidase.
    Lee F; Bae KH; Kurisawa M
    Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosslinking strategies facilitate tunable structural properties of fibrin microthreads.
    Grasman JM; Page RL; Dominko T; Pins GD
    Acta Biomater; 2012 Nov; 8(11):4020-30. PubMed ID: 22824528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications.
    Khanmohammadi M; Dastjerdi MB; Ai A; Ahmadi A; Godarzi A; Rahimi A; Ai J
    Biomater Sci; 2018 May; 6(6):1286-1298. PubMed ID: 29714366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Hydrogen Peroxide-Mediated Cross-Linking and Degradation on Cell-Adhesive Gelatin Hydrogels.
    Mubarok W; Qu Y; Sakai S
    ACS Appl Bio Mater; 2021 May; 4(5):4184-4190. PubMed ID: 35006831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering.
    Fang Y; Zhang T; Song Y; Sun W
    Biomed Mater; 2020 May; 15(4):045003. PubMed ID: 31530754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomimetic approach to modulating the sustained release of fibroblast growth factor 2 from fibrin microthread scaffolds.
    Carnes ME; Gonyea CR; Coburn JM; Pins GD
    Explor Biomat X; 2024; 1(2):58-83. PubMed ID: 39070763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Bioprinting of Sugar Beet Pectin through Horseradish Peroxidase-Catalyzed Cross-Linking.
    Mubarok W; Zhang C; Sakai S
    ACS Appl Bio Mater; 2024 May; 7(5):3506-3514. PubMed ID: 38696441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.
    Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H
    Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application.
    Gostynska N; Shankar Krishnakumar G; Campodoni E; Panseri S; Montesi M; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M
    Biomed Mater; 2017 Aug; 12(5):055002. PubMed ID: 28573980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K; Qian Y; Wang H; Fan L; Huang C; Yin A; Mo X
    J Biomed Mater Res A; 2010 Dec; 95(3):870-81. PubMed ID: 20824649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatically crosslinked silk-hyaluronic acid hydrogels.
    Raia NR; Partlow BP; McGill M; Kimmerling EP; Ghezzi CE; Kaplan DL
    Biomaterials; 2017 Jul; 131():58-67. PubMed ID: 28376366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.
    Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M
    Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.