These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32364183)
1. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Son JE; Choi H; Lim H; Ku J Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183 [TBL] [Abstract][Full Text] [Related]
2. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs). Lim H; Ku J Biomed Eng Lett; 2017 Nov; 7(4):281-286. PubMed ID: 30603177 [TBL] [Abstract][Full Text] [Related]
3. Multiple-command single-frequency SSVEP-based BCI system using flickering action video. Lim H; Ku J J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844 [TBL] [Abstract][Full Text] [Related]
4. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. Lim H; Ku J IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380 [TBL] [Abstract][Full Text] [Related]
5. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
6. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions. Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607 [TBL] [Abstract][Full Text] [Related]
7. Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain-Computer Interface Action-Observation Games. Lim H; Ku J Cyberpsychol Behav Soc Netw; 2021 Aug; 24(8):566-572. PubMed ID: 33275851 [TBL] [Abstract][Full Text] [Related]
8. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game. Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549 [TBL] [Abstract][Full Text] [Related]
9. An Adaptive Hybrid Brain-Computer Interface for Hand Function Rehabilitation of Stroke Patients. Su J; Wang J; Wang W; Wang Y; Bunterngchit C; Zhang P; Hou ZG IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2950-2960. PubMed ID: 39028609 [TBL] [Abstract][Full Text] [Related]
10. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894 [TBL] [Abstract][Full Text] [Related]
11. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
12. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks. Ai J; Meng J; Mai X; Zhu X IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132 [TBL] [Abstract][Full Text] [Related]
13. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
14. Decoding emotion from high-frequency steady state visual evoked potential (SSVEP). Nie L; Ku Y J Neurosci Methods; 2023 Jul; 395():109919. PubMed ID: 37422072 [TBL] [Abstract][Full Text] [Related]
15. Brain-computer interface based on intermodulation frequency. Chen X; Chen Z; Gao S; Gao X J Neural Eng; 2013 Dec; 10(6):066009. PubMed ID: 24140740 [TBL] [Abstract][Full Text] [Related]
16. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448 [TBL] [Abstract][Full Text] [Related]
17. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Brumberg JS; Nguyen A; Pitt KM; Lorenz SD Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839 [TBL] [Abstract][Full Text] [Related]
18. Effect of higher frequency on the classification of steady-state visual evoked potentials. Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712 [TBL] [Abstract][Full Text] [Related]
19. An SSVEP-based brain-computer interface for the control of functional electrical stimulation. Gollee H; Volosyak I; McLachlan AJ; Hunt KJ; Gräser A IEEE Trans Biomed Eng; 2010 Aug; 57(8):1847-55. PubMed ID: 20176528 [TBL] [Abstract][Full Text] [Related]
20. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]