BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32364196)

  • 1. Photocaged FRET nanoflares for intracellular microRNA imaging.
    Li J; Cai S; Zhou B; Meng X; Guo Q; Yang X; Huang J; Wang K
    Chem Commun (Camb); 2020 Jun; 56(45):6126-6129. PubMed ID: 32364196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified FRET Nanoflares: An Endogenous mRNA-Powered Nanomachine for Intracellular MicroRNA Imaging.
    Li J; Wang J; Liu S; Xie N; Quan K; Yang Y; Yang X; Huang J; Wang K
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20104-20111. PubMed ID: 32725743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer-based FRET nanoflares for imaging potassium ions in living cells.
    Yang Y; Huang J; Yang X; Quan K; Xie N; Ou M; Tang J; Wang K
    Chem Commun (Camb); 2016 Sep; 52(76):11386-11389. PubMed ID: 27709181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoactivated Nanoflares for mRNA Detection in Single Living Cells.
    Lin M; Yi X; Huang F; Ma X; Zuo X; Xia F
    Anal Chem; 2019 Feb; 91(3):2021-2027. PubMed ID: 30638008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations.
    Yang Y; Huang J; Yang X; Quan K; Wang H; Ying L; Xie N; Ou M; Wang K
    J Am Chem Soc; 2015 Jul; 137(26):8340-3. PubMed ID: 26110466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophoretic Detection of Exosomal microRNAs by Nanoflares.
    Zhao J; Liu C; Li Y; Ma Y; Deng J; Li L; Sun J
    J Am Chem Soc; 2020 Mar; 142(11):4996-5001. PubMed ID: 32134270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical applications of nanoflares: Targeted intracellular fluorescence probes.
    Chenab KK; Eivazzadeh-Keihan R; Maleki A; Pashazadeh-Panahi P; Hamblin MR; Mokhtarzadeh A
    Nanomedicine; 2019 Apr; 17():342-358. PubMed ID: 30826476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocaged Nanoparticle Sensor for Sensitive MicroRNA Imaging in Living Cancer Cells with Temporal Control.
    Shen Y; Li Z; Wang G; Ma N
    ACS Sens; 2018 Feb; 3(2):494-503. PubMed ID: 29368922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid, facile, reagentless, and room-temperature conjugation of monolayer MoS
    Wu MJ; Tseng WL
    J Mater Chem B; 2020 Feb; 8(8):1692-1698. PubMed ID: 32016235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Yu X; Hu L; Zhang F; Wang M; Xia Z; Wei W
    Mikrochim Acta; 2018 Mar; 185(4):239. PubMed ID: 29594715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocaged amplified FRET nanoflares: spatiotemporal controllable of mRNA-powered nanomachines for precise and sensitive microRNA imaging in live cells.
    Li J; Liu S; Wang J; Liu R; Yang X; Wang K; Huang J
    Nucleic Acids Res; 2022 Apr; 50(7):e40. PubMed ID: 34935962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.
    Li CH; Kuo TR; Su HJ; Lai WY; Yang PC; Chen JS; Wang DY; Wu YC; Chen CC
    Sci Rep; 2015 Oct; 5():15675. PubMed ID: 26507179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-assembled DNA nanostructure as a FRET nanoflare for intracellular ATP imaging.
    Cai S; Wang J; Li J; Zhou B; He C; Meng X; Huang J; Wang K
    Chem Commun (Camb); 2021 Jun; 57(51):6257-6260. PubMed ID: 34060563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Radiosensitizing Gold Nanoparticles.
    Jiménez Sánchez G; Maury P; Stefancikova L; Campion O; Laurent G; Chateau A; Bouraleh Hoch F; Boschetti F; Denat F; Pinel S; Devy J; Porcel E; Lacombe S; Bazzi R; Roux S
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ratiometric enhanced fluorometric determination and imaging of intracellular microRNA-155 by using carbon dots, gold nanoparticles and rhodamine B for signal amplification.
    Hamd-Ghadareh S; Hamah-Ameen BA; Salimi A; Fathi F; Soleimani F
    Mikrochim Acta; 2019 Jun; 186(7):469. PubMed ID: 31240482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals.
    Zhao J; Chu H; Zhao Y; Lu Y; Li L
    J Am Chem Soc; 2019 May; 141(17):7056-7062. PubMed ID: 30929430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular fluorometric determination of microRNA-21 by using a switch-on nanoprobe composed of carbon nanotubes and gold nanoclusters.
    Liu Y; Jiang L; Fan X; Liu P; Xu S; Luo X
    Mikrochim Acta; 2019 Jun; 186(7):447. PubMed ID: 31197573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence light up detection of aluminium ion and imaging in live cells based on the aggregation-induced emission enhancement of thiolated gold nanoclusters.
    Luo P; Zheng Y; Qin Z; Li C; Jiang H; Wang X
    Talanta; 2019 Nov; 204():548-554. PubMed ID: 31357332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Modal Fe
    Jiang X; Hao C; Zhang H; Wu X; Xu L; Sun M; Xu C; Kuang H
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41405-41413. PubMed ID: 32191832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-tethered self-assembled FRET-flares for microRNA imaging in living cancer cells.
    Wang A; Lin Q; Liu S; Li J; Wang J; Quan K; Yang X; Huang J; Wang K
    Chem Commun (Camb); 2020 Feb; 56(16):2463-2466. PubMed ID: 31996881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.