These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32364394)

  • 1. Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems.
    You JB; Xiong X; Bai P; Zhou ZK; Ma RM; Yang WL; Lu YK; Xiao YF; Png CE; Garcia-Vidal FJ; Qiu CW; Wu L
    Nano Lett; 2020 Jun; 20(6):4645-4652. PubMed ID: 32364394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong antibunching effect under the combination of conventional and unconventional photon blockade.
    Zhu H; Li X; Li Z; Wang F; Zhong X
    Opt Express; 2023 Jun; 31(13):22030-22039. PubMed ID: 37381286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities.
    Sáez-Blázquez R; Cuartero-González Á; Feist J; García-Vidal FJ; Fernández-Domínguez AI
    Nano Lett; 2022 Mar; 22(6):2365-2373. PubMed ID: 35285655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-silicon single-photon source by unconventional photon blockade.
    Flayac H; Gerace D; Savona V
    Sci Rep; 2015 Jun; 5():11223. PubMed ID: 26061665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Controlled Tunable Unconventional Photon Blockade in a Single-Atom-Cavity System.
    Li H; Liu M; Yang F; Zhang S; Ruan S
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of photon blockade effect via quantum interference.
    Zou F; Lai DG; Liao JQ
    Opt Express; 2020 May; 28(11):16175-16190. PubMed ID: 32549445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Antibunching in Resonance Fluorescence.
    Hanschke L; Schweickert L; Carreño JCL; Schöll E; Zeuner KD; Lettner T; Casalengua EZ; Reindl M; da Silva SFC; Trotta R; Finley JJ; Rastelli A; Del Valle E; Laussy FP; Zwiller V; Müller K; Jöns KD
    Phys Rev Lett; 2020 Oct; 125(17):170402. PubMed ID: 33156681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Photon Blockade in an Atom-Driven Cavity QED System.
    Hamsen C; Tolazzi KN; Wilk T; Rempe G
    Phys Rev Lett; 2017 Mar; 118(13):133604. PubMed ID: 28409981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.
    Zhang X; Li R; Wu H
    Sci Rep; 2016 Mar; 6():22560. PubMed ID: 26936334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact optimal control of photon blockade with weakly nonlinear coupled cavities.
    Shen HZ; Zhou YH; Liu HD; Wang GC; Yi XX
    Opt Express; 2015 Dec; 23(25):32835-58. PubMed ID: 26699072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity-enhanced coherent light scattering from a quantum dot.
    Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ
    Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibunched single-photon/photon-pair emission with coupled Jaynes-Cummings model.
    Ren Y; Duan Z; Fan B; Guan S; Xie M; Liu C
    Opt Express; 2022 Jun; 30(12):21787-21796. PubMed ID: 36224891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model.
    Tang J
    Opt Express; 2023 Apr; 31(8):12471-12486. PubMed ID: 37157406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibunched photons emitted by a quantum point contact out of equilibrium.
    Beenakker CW; Schomerus H
    Phys Rev Lett; 2004 Aug; 93(9):096801. PubMed ID: 15447122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon blockade in an optical cavity with one trapped atom.
    Birnbaum KM; Boca A; Miller R; Boozer AD; Northup TE; Kimble HJ
    Nature; 2005 Jul; 436(7047):87-90. PubMed ID: 16001065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade.
    Müller K; Rundquist A; Fischer KA; Sarmiento T; Lagoudakis KG; Kelaita YA; Sánchez Muñoz C; del Valle E; Laussy FP; Vučković J
    Phys Rev Lett; 2015 Jun; 114(23):233601. PubMed ID: 26196801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly Correlated States of Light and Repulsive Photons in Chiral Chains of Three-Level Quantum Emitters.
    Iversen OA; Pohl T
    Phys Rev Lett; 2021 Feb; 126(8):083605. PubMed ID: 33709742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.