These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32364707)

  • 21. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.
    Hirakawa T; Suzuki T; Bowler DR; Miyazaki T
    J Phys Condens Matter; 2017 Oct; 29(40):405901. PubMed ID: 28726683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
    Cawkwell MJ; Niklasson AM
    J Chem Phys; 2012 Oct; 137(13):134105. PubMed ID: 23039583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.
    Cawkwell MJ; Niklasson AM; Dattelbaum DM
    J Chem Phys; 2015 Feb; 142(6):064512. PubMed ID: 25681928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.
    Albaugh A; Head-Gordon T; Niklasson AMN
    J Chem Theory Comput; 2018 Feb; 14(2):499-511. PubMed ID: 29316388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-reversible Born-Oppenheimer molecular dynamics.
    Niklasson AM; Tymczak CJ; Challacombe M
    Phys Rev Lett; 2006 Sep; 97(12):123001. PubMed ID: 17025959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method.
    Zheng G; Niklasson AM; Karplus M
    J Chem Phys; 2011 Jul; 135(4):044122. PubMed ID: 21806105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories.
    Herbert JM; Head-Gordon M
    J Chem Phys; 2004 Dec; 121(23):11542-56. PubMed ID: 15634119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch.
    Zhou G; Nebgen B; Lubbers N; Malone W; Niklasson AMN; Tretiak S
    J Chem Theory Comput; 2020 Aug; 16(8):4951-4962. PubMed ID: 32609513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.
    Nam K
    J Chem Theory Comput; 2013 Aug; 9(8):3393-403. PubMed ID: 26584095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid Extended Lagrangian, Post-Hartree-Fock Born-Oppenheimer ab Initio Molecular Dynamics Using Fragment-Based Electronic Structure.
    Li J; Haycraft C; Iyengar SS
    J Chem Theory Comput; 2016 Jun; 12(6):2493-508. PubMed ID: 27163283
    [No Abstract]   [Full Text] [Related]  

  • 31. Quantum-Based Molecular Dynamics Simulations Using Tensor Cores.
    Finkelstein J; Smith JS; Mniszewski SM; Barros K; Negre CFA; Rubensson EH; Niklasson AMN
    J Chem Theory Comput; 2021 Oct; 17(10):6180-6192. PubMed ID: 34595916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extended Lagrangian free energy molecular dynamics.
    Niklasson AM; Steneteg P; Bock N
    J Chem Phys; 2011 Oct; 135(16):164111. PubMed ID: 22047232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+ Atoms.
    Arita M; Bowler DR; Miyazaki T
    J Chem Theory Comput; 2014 Dec; 10(12):5419-25. PubMed ID: 26583225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient and Accurate Born-Oppenheimer Molecular Dynamics for Large Molecular Systems.
    Peters LDM; Kussmann J; Ochsenfeld C
    J Chem Theory Comput; 2017 Nov; 13(11):5479-5485. PubMed ID: 29068678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2005 Sep; 7(18):3269-75. PubMed ID: 16240040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-Time Time-Dependent Nuclear-Electronic Orbital Approach: Dynamics beyond the Born-Oppenheimer Approximation.
    Zhao L; Tao Z; Pavošević F; Wildman A; Hammes-Schiffer S; Li X
    J Phys Chem Lett; 2020 May; 11(10):4052-4058. PubMed ID: 32251589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Born-Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions.
    Yonehara T; Takatsuka K
    J Chem Phys; 2010 Jun; 132(24):244102. PubMed ID: 20590176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction.
    Albaugh A; Demerdash O; Head-Gordon T
    J Chem Phys; 2015 Nov; 143(17):174104. PubMed ID: 26547155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conditional Born-Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine.
    Albareda G; Bofill JM; Tavernelli I; Huarte-Larrañaga F; Illas F; Rubio A
    J Phys Chem Lett; 2015 May; 6(9):1529-35. PubMed ID: 26263307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding.
    Loco D; Lagardère L; Caprasecca S; Lipparini F; Mennucci B; Piquemal JP
    J Chem Theory Comput; 2017 Sep; 13(9):4025-4033. PubMed ID: 28759205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.