These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32364738)

  • 1. Exploring the Reaction Mechanism of HIV Reverse Transcriptase with a Nucleotide Substrate.
    Wang H; Huang N; Dangerfield T; Johnson KA; Gao J; Elber R
    J Phys Chem B; 2020 May; 124(21):4270-4283. PubMed ID: 32364738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How conformational dynamics of DNA polymerase select correct substrates: experiments and simulations.
    Kirmizialtin S; Nguyen V; Johnson KA; Elber R
    Structure; 2012 Apr; 20(4):618-27. PubMed ID: 22483109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrophosphate Release in the Protein HIV Reverse Transcriptase.
    Atis M; Johnson KA; Elber R
    J Phys Chem B; 2017 Oct; 121(41):9557-9565. PubMed ID: 28926712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nucleotides and nucleotide analogue inhibitors of HIV-1 reverse transcriptase in a ratchet model of polymerase translocation.
    Götte M
    Curr Pharm Des; 2006; 12(15):1867-77. PubMed ID: 16724953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides.
    Marx A; Spichty M; Amacker M; Schwitter U; Hübscher U; Bickle TA; Maga G; Giese B
    Chem Biol; 1999 Feb; 6(2):111-6. PubMed ID: 10021419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Selectivity of HIV Reverse Transcriptase: Conformations, Ligands, and Free Energy Partition.
    Kirmizialtin S; Johnson KA; Elber R
    J Phys Chem B; 2015 Sep; 119(35):11513-26. PubMed ID: 26225641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors.
    Rittinger K; Divita G; Goody RS
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):8046-9. PubMed ID: 7544013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate.
    Wöhrl BM; Krebs R; Goody RS; Restle T
    J Mol Biol; 1999 Sep; 292(2):333-44. PubMed ID: 10493879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis-Binding of Foscarnet.
    Das K; Balzarini J; Miller MT; Maguire AR; DeStefano JJ; Arnold E
    ACS Chem Biol; 2016 Aug; 11(8):2158-64. PubMed ID: 27192549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The base substitution fidelity of HIV-1 reverse transcriptase on DNA and RNA templates probed with 8-oxo-deoxyguanosine triphosphate.
    Bebenek K; Boyer JC; Kunkel TA
    Mutat Res; 1999 Oct; 429(2):149-58. PubMed ID: 10526200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E.
    Althaus IW; Chou JJ; Gonzales AJ; Deibel MR; Chou KC; Kezdy FJ; Romero DL; Aristoff PA; Tarpley WG; Reusser F
    J Biol Chem; 1993 Mar; 268(9):6119-24. PubMed ID: 7681060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human immunodeficiency virus type 1 reverse transcriptase. 3'-Azidodeoxythymidine 5'-triphosphate inhibition indicates two-step binding for template-primer.
    Jaju M; Beard WA; Wilson SH
    J Biol Chem; 1995 Apr; 270(17):9740-7. PubMed ID: 7537269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nontemplated nucleotide addition by HIV-1 reverse transcriptase.
    Golinelli MP; Hughes SH
    Biochemistry; 2002 May; 41(18):5894-906. PubMed ID: 11980493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase.
    Garforth SJ; Parniak MA; Prasad VR
    PLoS One; 2008 Apr; 3(4):e2074. PubMed ID: 18446195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid.
    Davis WR; Tomsho J; Nikam S; Cook EM; Somand D; Peliska JA
    Biochemistry; 2000 Nov; 39(46):14279-91. PubMed ID: 11087377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new general method for simultaneous fitting of temperature and concentration dependence of reaction rates yields kinetic and thermodynamic parameters for HIV reverse transcriptase specificity.
    Li A; Ziehr JL; Johnson KA
    J Biol Chem; 2017 Apr; 292(16):6695-6702. PubMed ID: 28255091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase.
    Hsieh JC; Zinnen S; Modrich P
    J Biol Chem; 1993 Nov; 268(33):24607-13. PubMed ID: 7693703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.