BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32364747)

  • 1. Deformation Dynamics of Giant Unilamellar Vesicles in the Large Surface-to-Volume Ratio Regime: The Emergence of Neuron-like Morphology.
    Koseki K; Suzuki H
    Langmuir; 2020 Jun; 36(22):6238-6244. PubMed ID: 32364747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation of giant unilamellar vesicles under osmotic stress.
    Zong W; Li Q; Zhang X; Han X
    Colloids Surf B Biointerfaces; 2018 Dec; 172():459-463. PubMed ID: 30196231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic relaxation drives expulsion in giant unilamellar vesicles.
    Leirer CT; Wunderlich B; Wixforth A; Schneider MF
    Phys Biol; 2009 Apr; 6(1):016011. PubMed ID: 19342768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation Modes of Giant Unilamellar Vesicles Encapsulating Biopolymers.
    Okano T; Inoue K; Koseki K; Suzuki H
    ACS Synth Biol; 2018 Feb; 7(2):739-747. PubMed ID: 29382193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled deformation of vesicles by flexible structured media.
    Zhang R; Zhou Y; Martínez-González JA; Hernández-Ortiz JP; Abbott NL; de Pablo JJ
    Sci Adv; 2016 Aug; 2(8):e1600978. PubMed ID: 27532056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilamellar LipoCEST Agents Obtained from Osmotic Shrinkage of Paramagnetically Loaded Giant Unilamellar Vescicles (GUVs).
    Tripepi M; Ferrauto G; Bennardi PO; Aime S; Delli Castelli D
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2279-2283. PubMed ID: 31803970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Inverse-Cone-Shape Lipids in Temperature-Controlled Self-Reproduction of Binary Vesicles.
    Jimbo T; Sakuma Y; Urakami N; Ziherl P; Imai M
    Biophys J; 2016 Apr; 110(7):1551-1562. PubMed ID: 27074680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach.
    Fidorra M; Garcia A; Ipsen JH; Härtel S; Bagatolli LA
    Biochim Biophys Acta; 2009 Oct; 1788(10):2142-9. PubMed ID: 19703410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curved membrane structures induced by native lipids in giant vesicles.
    Nair KS; Raj NB; Nampoothiri KM; Mohanan G; Acosta-Gutiérrez S; Bajaj H
    J Colloid Interface Sci; 2022 Apr; 611():397-407. PubMed ID: 34963074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage.
    Viallat A; Dalous J; Abkarian M
    Biophys J; 2004 Apr; 86(4):2179-87. PubMed ID: 15041658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flat and sigmoidally curved contact zones in vesicle-vesicle adhesion.
    Ziherl P; Svetina S
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):761-5. PubMed ID: 17215358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid membrane bending as assessed by the shape sequence of giant oblate phospholipid vesicles.
    Majhenc J; Bozic B; Svetina S; Zeks B
    Biochim Biophys Acta; 2004 Aug; 1664(2):257-66. PubMed ID: 15328058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdomain evolution on giant unilamellar vesicles.
    Embar A; Dolbow J; Fried E
    Biomech Model Mechanobiol; 2013 Jun; 12(3):597-615. PubMed ID: 22907599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal fluctuations and osmotic stability of lipid vesicles.
    Wennerström H; Sparr E; Stenhammar J
    Phys Rev E; 2022 Dec; 106(6-1):064607. PubMed ID: 36671149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model.
    Zheng H; Jiménez-Flores R; Gragson D; Everett DW
    J Agric Food Chem; 2014 Apr; 62(14):3236-3243. PubMed ID: 24641452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic shrinkage and reswelling of giant vesicles composed of dioleoylphosphatidylglycerol and cholesterol.
    Claessens MM; Leermakers FA; Hoekstra FA; Stuart MA
    Biochim Biophys Acta; 2008 Apr; 1778(4):890-5. PubMed ID: 18291092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-field Microscopy.
    Bhat A; Huan K; Cooks T; Boukari H; Lu Q
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29597298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures.
    Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.