These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. Habibi MK; Samaei AT; Gheshlaghi B; Lu J; Lu Y Acta Biomater; 2015 Apr; 16():178-86. PubMed ID: 25662164 [TBL] [Abstract][Full Text] [Related]
3. The structure and mechanics of Moso bamboo material. Dixon PG; Gibson LJ J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056211 [TBL] [Abstract][Full Text] [Related]
4. Crack propagation in bamboo's hierarchical cellular structure. Habibi MK; Lu Y Sci Rep; 2014 Jul; 4():5598. PubMed ID: 24998298 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the Effect of Inhomogeneous Material on the Fracture Mechanisms of Bamboo by Finite Element Method. Ramful R; Sakuma A Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182322 [TBL] [Abstract][Full Text] [Related]
6. Bamboo-Inspired Structurally Efficient Materials with a Large Continuous Gradient. Mao A; Chen J; Bu X; Tian L; Gao W; Saiz E; Bai H Small; 2023 Aug; 19(35):e2301144. PubMed ID: 37186449 [TBL] [Abstract][Full Text] [Related]
8. Improving structural damage tolerance and fracture energy via bamboo-inspired void patterns. Zhu X; Liu J; Hua Y; Tertuliano OA; Raney JR Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38917819 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Non-Destructive Indicating Properties for Predicting Compressive Strengths of Tangphadungrat P; Hansapinyo C; Buachart C; Suwan T; Limkatanyu S Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836983 [TBL] [Abstract][Full Text] [Related]
10. Application of Sustainable Bamboo-Based Composite Reinforcement in Structural-Concrete Beams: Design and Evaluation. Javadian A; Smith IFC; Hebel DE Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033099 [TBL] [Abstract][Full Text] [Related]
11. Sustainable high-strength and dimensionally stable composites through in situ regulation and reconstitution of bamboo-derived lignin and hemicellulose contents. Han S; Chen X; Chen F; Lou Z; Ren X; Ye H; Wang G Int J Biol Macromol; 2024 May; 267(Pt 2):131595. PubMed ID: 38621564 [TBL] [Abstract][Full Text] [Related]
12. Compressive Failure Mechanism of Structural Bamboo Scrimber. Wang X; Zhong Y; Luo X; Ren H Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883726 [TBL] [Abstract][Full Text] [Related]
15. Numerical Simulation of the Shear Capacity of a GFRP-Strengthened Natural Bamboo-Bolt Composite Joint. Li Q; Ji X; Jin Z; Xu J; Yang S; Lv S Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893991 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading. Wang S; Wang J; Komvopoulos K Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975333 [TBL] [Abstract][Full Text] [Related]
17. Mechanically robust bamboo node and its hierarchically fibrous structural design. Chen SM; Zhang SC; Gao HL; Wang Q; Zhou L; Zhao HY; Li XY; Gong M; Pan XF; Cui C; Wang ZY; Zhang Y; Wu H; Yu SH Natl Sci Rev; 2023 Feb; 10(2):nwac195. PubMed ID: 36817831 [TBL] [Abstract][Full Text] [Related]
18. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Chen G; Luo H; Yang H; Zhang T; Li S Acta Biomater; 2018 Jan; 65():203-215. PubMed ID: 28987785 [TBL] [Abstract][Full Text] [Related]
19. Mechanical Behavior of Foam-Filled Bamboo Composite Tubes under Axial Compression. Wei Y; Tang S; Chen S; Wang Q; Wang J Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631888 [TBL] [Abstract][Full Text] [Related]
20. Experimental Study on the Fracture Toughness of Bamboo Scrimber. Zhang K; Hou Y; Lu Y; Wang M Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]