These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32364949)

  • 1. Mechanical properties and failure deformation mechanisms of yak horn under quasi-static compression and dynamic impact.
    Liu S; Xu S; Song J; Zhou J; Xu L; Li X; Zou M
    J Mech Behav Biomed Mater; 2020 Jul; 107():103753. PubMed ID: 32364949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.
    Johnson KL; Trim MW; Francis DK; Whittington WR; Miller JA; Bennett CE; Horstemeyer MF
    Acta Biomater; 2017 Jan; 48():300-308. PubMed ID: 27793720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn.
    Huang W; Zaheri A; Jung JY; Espinosa HD; Mckittrick J
    Acta Biomater; 2017 Dec; 64():1-14. PubMed ID: 28974475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure, elastic properties and deformation mechanisms of horn keratin.
    Tombolato L; Novitskaya EE; Chen PY; Sheppard FA; McKittrick J
    Acta Biomater; 2010 Feb; 6(2):319-30. PubMed ID: 19577667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin.
    Trim MW; Horstemeyer MF; Rhee H; El Kadiri H; Williams LN; Liao J; Walters KB; McKittrick J; Park SJ
    Acta Biomater; 2011 Mar; 7(3):1228-40. PubMed ID: 21095245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and mechanical properties of horns derived from three domestic bovines.
    Zhang QB; Li C; Pan YT; Shan GH; Cao P; He J; Lin ZS; Ao NJ; Huang YX
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5036-43. PubMed ID: 24094221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different preservation on the mechanical properties of cortical bone under quasi-static and dynamic compression.
    Qiu J; Liao Z; Xiang H; Li H; Yuan D; Jiang C; Xie J; Qin M; Li K; Zhao H
    Front Bioeng Biotechnol; 2023; 11():1082254. PubMed ID: 36911185
    [No Abstract]   [Full Text] [Related]  

  • 9. Anisotropic nanomechanical properties of bovine horn using modulus mapping.
    Sun J; Wu W; Xue W; Tong J; Liu X
    IET Nanobiotechnol; 2016 Oct; 10(5):334-339. PubMed ID: 27676383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and mechanical properties of sheep horn.
    Zhu B; Zhang M; Zhao J
    Microsc Res Tech; 2016 Jul; 79(7):664-74. PubMed ID: 27184115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus).
    Ha NS; Lu G; Shu D; Yu TX
    J Mech Behav Biomed Mater; 2020 Apr; 104():103603. PubMed ID: 31929094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mechanical properties of structural anisotropic coal under low and medium strain rates.
    Li M; Liang W; Yue G; Zheng X; Liu H
    PLoS One; 2020; 15(8):e0236802. PubMed ID: 32785277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mechanical characteristics and failure mode of serpentine under a three-dimensional high static load and frequent dynamic disturbance.
    Wang C; Cheng LP; Wang C; Xiong ZQ; Wei SM
    PLoS One; 2019; 14(9):e0222684. PubMed ID: 31545836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process.
    Zhang B; Hu S; Fan Z
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.