These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32364971)

  • 41. Energetics in a solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and allometry of RMR in African mole-rats (Bathyergidae).
    Zelová J; Sumbera R; Sedlácek F; Burda H
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):412-9. PubMed ID: 17337221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaporative water loss in man in a gravity-free environment.
    Leach CS; Leonard JI; Rambaut PC; Johnson PC
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Sep; 45(3):430-6. PubMed ID: 701129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal biology of the fossorial rodent Ctenomys fulvus from the Atacama desert, northern Chile.
    Cortés A; Miranda E; Rosenmann M; Rau JR
    J Therm Biol; 2000 Dec; 25(6):425-430. PubMed ID: 10880865
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of thermal environment on heat balance and insensible water loss in low-birth-weight infants.
    Bell EF; Gray JC; Weinstein MR; Oh W
    J Pediatr; 1980 Mar; 96(3 Pt 1):452-9. PubMed ID: 7359241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osmotic regulation of evaporative water loss and body temperature by intracranial receptors in the heat-stressed cat.
    Doris PA
    Pflugers Arch; 1983 Sep; 398(4):337-40. PubMed ID: 6634389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermoregulatory role of insensible evaporative water loss constancy in a heterothermic marsupial.
    Cooper CE; Withers PC
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29142044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic, ventilatory and hygric physiology of the chuditch (Dasyurus geoffroii; Marsupialia, Dasyuridae).
    Schmidt S; Withers PC; Cooper CE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):92-7. PubMed ID: 19447187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars.
    O'Connor RS; Wolf BO; Brigham RM; McKechnie AE
    J Comp Physiol B; 2017 Apr; 187(3):477-491. PubMed ID: 27812726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail.
    Smith EK; O'Neill J; Gerson AR; Wolf BO
    J Exp Biol; 2015 Nov; 218(Pt 22):3636-46. PubMed ID: 26582934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal physiology of a range-restricted desert lark.
    Kemp R; McKechnie AE
    J Comp Physiol B; 2019 Feb; 189(1):131-141. PubMed ID: 30488103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surprisingly low risk of overheating during digging in two subterranean rodents.
    Okrouhlík J; Burda H; Kunc P; Knížková I; Šumbera R
    Physiol Behav; 2015 Jan; 138():236-41. PubMed ID: 25446207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The heat is on: Thermoregulatory and evaporative cooling patterns of desert-dwelling bats.
    de Mel RK; Moseby KE; Stewart KA; Rankin KE; Czenze ZJ
    J Therm Biol; 2024 Jul; 123():103919. PubMed ID: 39024847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal freedom of Graomys griseoflavus in a seasonal environment.
    Caviedes-Vidal E; Bozinovic F; Rosenmann M
    Comp Biochem Physiol A Comp Physiol; 1987; 87(2):257-9. PubMed ID: 2886267
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia.
    Marhold S; Nagel A
    J Comp Physiol B; 1995; 164(8):636-45. PubMed ID: 7738232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of methanol on autonomic thermoregulation of rats at different ambient temperatures.
    Mohler FS; Gordon CJ
    Toxicol Lett; 1990 Jul; 52(2):153-62. PubMed ID: 2377999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cocoon of the fossorial frog Cyclorana australis functions primarily as a barrier to water exchange with the substrate.
    Reynolds SJ; Christian KA; Tracy CR
    Physiol Biochem Zool; 2010; 83(5):877-84. PubMed ID: 20687829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaporative water loss in the new-born baby.
    Hey EN; Katz G
    J Physiol; 1969 Feb; 200(3):605-19. PubMed ID: 5765850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Total Evaporative Water Loss in Birds at Different Ambient Temperatures: Allometric and Stoichiometric Approaches.
    Gavrilov VM
    Zool Stud; 2017; 56():e37. PubMed ID: 31966236
    [No Abstract]   [Full Text] [Related]  

  • 59. Environmental correlates of physiological variables in marsupials.
    Withers PC; Cooper CE; Larcombe AN
    Physiol Biochem Zool; 2006; 79(3):437-53. PubMed ID: 16691511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution.
    Dunkin RC; Wilson D; Way N; Johnson K; Williams TM
    J Exp Biol; 2013 Aug; 216(Pt 15):2939-52. PubMed ID: 23842629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.