These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32365021)

  • 41. Assumptions about the positioning of virtual stimuli affect gaze direction estimates during Augmented Reality based interactions.
    Binetti N; Cheng T; Mareschal I; Brumby D; Julier S; Bianchi-Berthouze N
    Sci Rep; 2019 Feb; 9(1):2566. PubMed ID: 30796287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements.
    Gerig N; Mayo J; Baur K; Wittmann F; Riener R; Wolf P
    PLoS One; 2018; 13(1):e0189275. PubMed ID: 29293512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of the Ebbinghaus illusion on grasping behaviour of children.
    Hanisch C; Konczak J; Dohle C
    Exp Brain Res; 2001 Mar; 137(2):237-45. PubMed ID: 11315553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perception and production of object-related grasping in 6-month-olds.
    Daum MM; Prinz W; Aschersleben G
    J Exp Child Psychol; 2011 Apr; 108(4):810-8. PubMed ID: 21092981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Augmented Versus Virtual Reality in Education: An Exploratory Study Examining Science Knowledge Retention When Using Augmented Reality/Virtual Reality Mobile Applications.
    Huang KT; Ball C; Francis J; Ratan R; Boumis J; Fordham J
    Cyberpsychol Behav Soc Netw; 2019 Feb; 22(2):105-110. PubMed ID: 30657334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Too much anticipation? Large anticipatory adjustments of grasping movements to minimal object manipulations.
    Herbort O
    Hum Mov Sci; 2015 Aug; 42():100-16. PubMed ID: 26004123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping.
    Davarpanah Jazi S; Heath M
    Brain Cogn; 2017 Jun; 114():29-39. PubMed ID: 28346879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grasping an object naturally or with a tool: are these tasks guided by a common motor representation?
    Gentilucci M; Roy AC; Stefanini S
    Exp Brain Res; 2004 Aug; 157(4):496-506. PubMed ID: 15007584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Grasping Weber's illusion: The effect of receptor density differences on grasping and matching.
    Anema HA; Wolswijk VW; Ruis C; Dijkerman HC
    Cogn Neuropsychol; 2008 Oct; 25(7):951-67. PubMed ID: 18608322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties.
    Monaco S; Chen Y; Medendorp WP; Crawford JD; Fiehler K; Henriques DY
    Cereb Cortex; 2014 Jun; 24(6):1540-54. PubMed ID: 23362111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions.
    Glendinning DS; Cooper BY; Vierck CJ; Leonard CM
    Somatosens Mot Res; 1992; 9(1):61-73. PubMed ID: 1595322
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Give Me a Hand: Improving the Effectiveness of Near-field Augmented Reality Interactions By Avatarizing Users' End Effectors.
    Venkatakrishnan R; Venkatakrishnan R; Raveendranath B; Pagano CC; Robb AC; Lin WC; Babu SV
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Does depth-cue combination yield identical biases in perception and grasping?
    Campagnoli C; Domini F
    J Exp Psychol Hum Percept Perform; 2019 May; 45(5):659-680. PubMed ID: 30920251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of user's perceived presence and promotion focus on usability for interacting in virtual environments.
    Sun HM; Li SP; Zhu YQ; Hsiao B
    Appl Ergon; 2015 Sep; 50():126-32. PubMed ID: 25959326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Habit outweighs planning in grasp selection for object manipulation.
    Herbort O; Mathew H; Kunde W
    Cogn Psychol; 2017 Feb; 92():127-140. PubMed ID: 27951435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple distance cues do not prevent systematic biases in reach to grasp movements.
    Kopiske KK; Bozzacchi C; Volcic R; Domini F
    Psychol Res; 2019 Feb; 83(1):147-158. PubMed ID: 30259095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.
    Mathew H; Kunde W; Herbort O
    Exp Brain Res; 2017 May; 235(5):1397-1409. PubMed ID: 28233050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.