These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32365038)

  • 1. Image-Based Food Classification and Volume Estimation for Dietary Assessment: A Review.
    Lo FPW; Sun Y; Qiu J; Lo B
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1926-1939. PubMed ID: 32365038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food Volume Estimation Based on Deep Learning View Synthesis from a Single Depth Map.
    Lo FP; Sun Y; Qiu J; Lo B
    Nutrients; 2018 Dec; 10(12):. PubMed ID: 30567362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based food portion size estimation using a smartphone without a fiducial marker.
    Yang Y; Jia W; Bucher T; Zhang H; Sun M
    Public Health Nutr; 2019 May; 22(7):1180-1192. PubMed ID: 29623867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of the state of the art of automated capture of dietary intake information.
    Steele R
    Crit Rev Food Sci Nutr; 2015; 55(13):1929-38. PubMed ID: 24950017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals.
    Fatehah AA; Poh BK; Shanita SN; Wong JE
    Nutrients; 2018 Jul; 10(8):. PubMed ID: 30060528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods.
    Boushey CJ; Spoden M; Zhu FM; Delp EJ; Kerr DA
    Proc Nutr Soc; 2017 Aug; 76(3):283-294. PubMed ID: 27938425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed deep learning and natural language processing method for fake-food image recognition and standardization to help automated dietary assessment.
    Mezgec S; Eftimov T; Bucher T; Koroušić Seljak B
    Public Health Nutr; 2019 May; 22(7):1193-1202. PubMed ID: 29623869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-based nutrient estimation for Chinese dishes using deep learning.
    Ma P; Lau CP; Yu N; Li A; Liu P; Wang Q; Sheng J
    Food Res Int; 2021 Sep; 147():110437. PubMed ID: 34399450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying Image-Based Food-Recognition Systems on Dietary Assessment: A Systematic Review.
    Dalakleidi KV; Papadelli M; Kapolos I; Papadimitriou K
    Adv Nutr; 2022 Dec; 13(6):2590-2619. PubMed ID: 35803496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-assisted dietary assessment: a systematic review of the evidence.
    Gemming L; Utter J; Ni Mhurchu C
    J Acad Nutr Diet; 2015 Jan; 115(1):64-77. PubMed ID: 25441955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.
    Probst Y; Nguyen DT; Tran MK; Li W
    Nutrients; 2015 Jul; 7(8):6128-38. PubMed ID: 26225994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usability of Food Size Aids in Mobile Dietary Reporting Apps for Young Adults: Randomized Controlled Trial.
    Liu YC; Wu ST; Lin SJ; Chen CH; Lin YS; Chen HY
    JMIR Mhealth Uhealth; 2020 Apr; 8(4):e14543. PubMed ID: 32347805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a photographic atlas of food portions for accurate quantification of dietary intakes in China.
    Ding Y; Yang Y; Li F; Shao Y; Sun Z; Zhong C; Fan P; Li Z; Zhang M; Li X; Jiang T; Song C; Chen D; Peng X; Yin L; She Y; Wang Z
    J Hum Nutr Diet; 2021 Jun; 34(3):604-615. PubMed ID: 33406287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Neural Networks for Image-Based Dietary Assessment.
    Mezgec S; Koroušić Seljak B
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The international food unit: a new measurement aid that can improve portion size estimation.
    Bucher T; Weltert M; Rollo ME; Smith SP; Jia W; Collins CE; Sun M
    Int J Behav Nutr Phys Act; 2017 Sep; 14(1):124. PubMed ID: 28899402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Image-Assisted Food Records in Comparison to Regular Food Records: A Validation Study against Doubly Labeled Water in 12-Month-Old Infants.
    Johansson U; Venables M; Öhlund I; Lind T
    Nutrients; 2018 Dec; 10(12):. PubMed ID: 30518042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Survey of Image-Based Food Recognition and Volume Estimation Methods for Dietary Assessment.
    Tahir GA; Loo CK
    Healthcare (Basel); 2021 Dec; 9(12):. PubMed ID: 34946400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pictogram-based method of visualizing dietary intake.
    Liu Y; Chiu S; Lin Y; Chiou WK
    Methods Inf Med; 2014; 53(6):493-500. PubMed ID: 25301223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of Digital Images in 24-Hour Recalls May Lead to Less Misestimation of Portion Size Compared with Traditional Interviewer-Administered Recalls.
    Kirkpatrick SI; Potischman N; Dodd KW; Douglass D; Zimmerman TP; Kahle LL; Thompson FE; George SM; Subar AF
    J Nutr; 2016 Dec; 146(12):2567-2573. PubMed ID: 27807039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment.
    Li B; Sun M; Mao ZH; Jia W
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.