BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32365146)

  • 1. Bioinspired polydopamine nanoparticles: synthesis, nanomechanical properties, and efficient PEGylation strategy.
    Zmerli I; Michel JP; Makky A
    J Mater Chem B; 2020 May; 8(20):4489-4504. PubMed ID: 32365146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, properties and applications of mussel-inspired polydopamine.
    Ho CC; Ding SJ
    J Biomed Nanotechnol; 2014 Oct; 10(10):3063-84. PubMed ID: 25992429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Synthesis of New PEGylated Polydopamine-Based Nanoconstructs Bearing ROS-Responsive Linkers and a Photosensitizer for Bimodal Photothermal and Photodynamic Therapies against Cancer.
    Zmerli I; Ibrahim N; Cressey P; Denis S; Makky A
    Mol Pharm; 2021 Sep; 18(9):3623-3637. PubMed ID: 34431682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability.
    Huang ZG; Lv FM; Wang J; Cao SJ; Liu ZP; Liu Y; Lu WY
    Int J Pharm; 2019 Feb; 556():217-225. PubMed ID: 30557679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of ultrasmall polydopamine-polyethylene glycol nanoparticles for cellular delivery.
    Harvey S; Ng DYW; Szelwicka J; Hueske L; Veith L; Raabe M; Lieberwirth I; Fytas G; Wunderlich K; Weil T
    Biointerphases; 2018 Oct; 13(6):06D407. PubMed ID: 30360628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance.
    Shao M; Chang C; Liu Z; Chen K; Zhou Y; Zheng G; Huang Z; Xu H; Xu P; Lu B
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110427. PubMed ID: 31408782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Multifunctional Polydopamine Nanoparticles As a Theranostic Nanoplatform against Cancer Cells.
    Wang J; Guo Y; Hu J; Li W; Kang Y; Cao Y; Liu H
    Langmuir; 2018 Aug; 34(32):9516-9524. PubMed ID: 30039972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-Photothermal Combination Therapy.
    Liu S; Pan J; Liu J; Ma Y; Qiu F; Mei L; Zeng X; Pan G
    Small; 2018 Mar; 14(13):e1703968. PubMed ID: 29430825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy.
    Tran HQ; Batul R; Bhave M; Yu A
    Biotechnol J; 2019 Dec; 14(12):e1900080. PubMed ID: 31293058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity.
    Yeroslavsky G; Lavi R; Alishaev A; Rahimipour S
    Langmuir; 2016 May; 32(20):5201-12. PubMed ID: 27133213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly.
    Zhou T; Yan L; Xie C; Li P; Jiang L; Fang J; Zhao C; Ren F; Wang K; Wang Y; Zhang H; Guo T; Lu X
    Small; 2019 Jun; 15(25):e1805440. PubMed ID: 31106983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine Coating Enhances Mucopenetration and Cell Uptake of Nanoparticles.
    Poinard B; Kamaluddin S; Tan AQQ; Neoh KG; Kah JCY
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4777-4789. PubMed ID: 30694045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of LA-Fe
    Chen Y; Zhang F; Wang Q; Lin H; Tong R; An N; Qu F
    Dalton Trans; 2018 Feb; 47(7):2435-2443. PubMed ID: 29379913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery.
    Ho CC; Ding SJ
    J Mater Sci Mater Med; 2013 Oct; 24(10):2381-90. PubMed ID: 23797829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid-modified Prussian blue/polydopamine nanoparticles as an MRI agent for use in targeted chemo/photothermal therapy.
    Lin X; Cao Y; Li J; Zheng D; Lan S; Xue Y; Yu F; Wu M; Zhu X
    Biomater Sci; 2019 Jul; 7(7):2996-3006. PubMed ID: 31111139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO
    Ding X; Zhang Y; Ling J; Lin C
    Colloids Surf B Biointerfaces; 2018 Nov; 171():101-109. PubMed ID: 30015139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of polyethylene glycol polymers on the physicochemical properties and mucoadhesivity of itraconazole nanoparticles.
    Machado Cruz R; Santos-Martinez MJ; Tajber L
    Eur J Pharm Biopharm; 2019 Nov; 144():57-67. PubMed ID: 31493509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of hollow mesoporous nickel sulfide nanoparticles for highly efficient combinatorial photothermal-chemotherapy of cancer.
    Yang R; Li R; Zhang L; Xu Z; Kang Y; Xue P
    J Mater Chem B; 2020 Sep; 8(34):7766-7776. PubMed ID: 32744285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.