BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32365453)

  • 21. Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications.
    Guha D; Alotaibi NM; Nguyen N; Gupta S; McFaul C; Yang VXD
    Can J Neurol Sci; 2017 May; 44(3):235-245. PubMed ID: 28434425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of Virtual and Augmented Reality in Biomedical Imaging.
    González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ
    J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Letter to the Editor: Virtual reality in the treatment of eating and weight disorders.
    Riva G
    Psychol Med; 2017 Oct; 47(14):2567-2568. PubMed ID: 28789714
    [No Abstract]   [Full Text] [Related]  

  • 24. Immersive virtual anatomy course using a cluster of volume visualization machines and passive stereo.
    Silverstein JC; Walsh C; Dech F; Olson E; Papka ME; Parsad N; Stevens R
    Stud Health Technol Inform; 2007; 125():439-44. PubMed ID: 17377320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual Reality as an Educational and Training Tool for Medicine.
    Izard SG; Juanes JA; García Peñalvo FJ; Estella JMG; Ledesma MJS; Ruisoto P
    J Med Syst; 2018 Feb; 42(3):50. PubMed ID: 29392522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DXR: A Toolkit for Building Immersive Data Visualizations.
    Sicat R; Li J; Choi J; Cordeil M; Jeong WK; Bach B; Pfister H
    IEEE Trans Vis Comput Graph; 2019 Jan; 25(1):715-725. PubMed ID: 30136991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.
    Pelargos PE; Nagasawa DT; Lagman C; Tenn S; Demos JV; Lee SJ; Bui TT; Barnette NE; Bhatt NS; Ung N; Bari A; Martin NA; Yang I
    J Clin Neurosci; 2017 Jan; 35():1-4. PubMed ID: 28137372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UnityMol prototype for FAIR sharing of molecular-visualization experiences: from pictures in the cloud to collaborative virtual reality exploration in immersive 3D environments.
    Martinez X; Baaden M
    Acta Crystallogr D Struct Biol; 2021 Jun; 77(Pt 6):746-754. PubMed ID: 34076589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Virtual Pelvic Floor, a tele-immersive educational environment.
    Pearl RK; Evenhouse R; Rasmussen M; Dech F; Silverstein JC; Prokasy S; Panko WB
    Proc AMIA Symp; 1999; ():345-8. PubMed ID: 10566378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual, 3-Dimensional Temporal Bone Model and Its Educational Value for Neurosurgical Trainees.
    Morone PJ; Shah KJ; Hendricks BK; Cohen-Gadol AA
    World Neurosurg; 2019 Feb; 122():e1412-e1415. PubMed ID: 30471440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immersive virtual reality technology in a three-dimensional virtual simulated store: Investigating telepresence and usability.
    Schnack A; Wright MJ; Holdershaw JL
    Food Res Int; 2019 Mar; 117():40-49. PubMed ID: 30736922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualizing biomolecular electrostatics in virtual reality with UnityMol-APBS.
    Laureanti J; Brandi J; Offor E; Engel D; Rallo R; Ginovska B; Martinez X; Baaden M; Baker NA
    Protein Sci; 2020 Jan; 29(1):237-246. PubMed ID: 31710727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.
    Wiebrands M; Malajczuk CJ; Woods AJ; Rohl AL; Mancera RL
    J Integr Bioinform; 2018 Jun; 15(2):. PubMed ID: 29927749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Virtual Reality Environment to Visualize Three-Dimensional Patient-Specific Models by a Mobile Head-Mounted Display.
    Vertemati M; Cassin S; Rizzetto F; Vanzulli A; Elli M; Sampogna G; Gallieni M
    Surg Innov; 2019 Jun; 26(3):359-370. PubMed ID: 30632462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual Connections: Improving Global Neurosurgery Through Immersive Technologies.
    Higginbotham G
    Front Surg; 2021; 8():629963. PubMed ID: 33681283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebrovascular Operative Anatomy: An Immersive 3D and Virtual Reality Description.
    Hendricks BK; Hartman J; Cohen-Gadol AA
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(6):613-623. PubMed ID: 30445659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of ultrasound, magnetic resonance imaging and virtual reality technologies to generate immersive three-dimensional fetal images.
    Werner H; Lopes Dos Santos JR; Ribeiro G; Belmonte SL; Daltro P; Araujo Júnior E
    Ultrasound Obstet Gynecol; 2017 Aug; 50(2):271-272. PubMed ID: 27804167
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of immersive virtual reality on proximal and conditioned threat.
    Rosén J; Kastrati G; Reppling A; Bergkvist K; Åhs F
    Sci Rep; 2019 Nov; 9(1):17407. PubMed ID: 31758051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
    Choudhury N; Gélinas-Phaneuf N; Delorme S; Del Maestro R
    World Neurosurg; 2013 Nov; 80(5):e9-19. PubMed ID: 23178917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.