These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 32365578)
1. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review. Wang X; Wang Q; Xu C Bioengineering (Basel); 2020 Apr; 7(2):. PubMed ID: 32365578 [TBL] [Abstract][Full Text] [Related]
2. Nanocelluloses - Nanotoxicology, Safety Aspects and 3D Bioprinting. Chinga-Carrasco G; Rosendahl J; Catalán J Adv Exp Med Biol; 2022; 1357():155-177. PubMed ID: 35583644 [TBL] [Abstract][Full Text] [Related]
3. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
4. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
5. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234 [TBL] [Abstract][Full Text] [Related]
6. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
8. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Ajdary R; Huan S; Zanjanizadeh Ezazi N; Xiang W; Grande R; Santos HA; Rojas OJ Biomacromolecules; 2019 Jul; 20(7):2770-2778. PubMed ID: 31117356 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Athukoralalage SS; Balu R; Dutta NK; Roy Choudhury N Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31108877 [TBL] [Abstract][Full Text] [Related]
10. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
11. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications. Rees A; Powell LC; Chinga-Carrasco G; Gethin DT; Syverud K; Hill KE; Thomas DW Biomed Res Int; 2015; 2015():925757. PubMed ID: 26090461 [TBL] [Abstract][Full Text] [Related]
12. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Pitton M; Fiorati A; Buscemi S; Melone L; Farè S; Contessi Negrini N Front Bioeng Biotechnol; 2021; 9():732689. PubMed ID: 34926414 [TBL] [Abstract][Full Text] [Related]
13. A comparative analysis of pulp-derived nanocelluloses for 3D bioprinting facial cartilages. Jovic TH; Nicholson T; Arora H; Nelson K; Doak SH; Whitaker IS Carbohydr Polym; 2023 Dec; 321():121261. PubMed ID: 37739492 [TBL] [Abstract][Full Text] [Related]
14. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Muthukrishnan L Carbohydr Polym; 2021 May; 260():117774. PubMed ID: 33712131 [TBL] [Abstract][Full Text] [Related]
15. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191 [TBL] [Abstract][Full Text] [Related]
17. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
18. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194 [TBL] [Abstract][Full Text] [Related]
19. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
20. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]