These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 32365636)
1. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636 [TBL] [Abstract][Full Text] [Related]
2. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data]. Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609 [TBL] [Abstract][Full Text] [Related]
3. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821 [TBL] [Abstract][Full Text] [Related]
4. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment. Bukowiecki J; Rose T; Kage H Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631 [TBL] [Abstract][Full Text] [Related]
5. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops. Hu P; Chapman SC; Zheng B Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681 [TBL] [Abstract][Full Text] [Related]
6. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Al-Ali ZM; Abdullah MM; Asadalla NB; Gholoum M Environ Monit Assess; 2020 May; 192(6):389. PubMed ID: 32447581 [TBL] [Abstract][Full Text] [Related]
8. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon. Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305 [TBL] [Abstract][Full Text] [Related]
9. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. Shafian S; Rajan N; Schnell R; Bagavathiannan M; Valasek J; Shi Y; Olsenholler J PLoS One; 2018; 13(5):e0196605. PubMed ID: 29715311 [TBL] [Abstract][Full Text] [Related]
10. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning. Sun C; Feng L; Zhang Z; Ma Y; Crosby T; Naber M; Wang Y Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947919 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Vineyard Canopy Characteristics from Vigour Maps Obtained Using UAV and Satellite Imagery. Campos J; García-Ruíz F; Gil E Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805351 [TBL] [Abstract][Full Text] [Related]
12. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices. Zhang Y; Han W; Niu X; Li G Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309 [TBL] [Abstract][Full Text] [Related]
13. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Kattenborn T; Eichel J; Fassnacht FE Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370 [TBL] [Abstract][Full Text] [Related]
14. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the accuracy of satellite-based methods to estimate residential proximity to agricultural crops. Hyland C; McConnell K; DeYoung E; Curl CL J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):294-307. PubMed ID: 36002734 [TBL] [Abstract][Full Text] [Related]
16. Pixel to practice: multi-scale image data for calibrating remote-sensing-based winter wheat monitoring methods. Anderegg J; Tschurr F; Kirchgessner N; Treier S; Graf LV; Schmucki M; Caflisch N; Minguely C; Streit B; Walter A Sci Data; 2024 Sep; 11(1):1033. PubMed ID: 39333128 [TBL] [Abstract][Full Text] [Related]
17. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning. Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643 [TBL] [Abstract][Full Text] [Related]
18. Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Kasimati A; Espejo-García B; Darra N; Fountas S Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590939 [TBL] [Abstract][Full Text] [Related]
19. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500 [TBL] [Abstract][Full Text] [Related]
20. Evapotranspiration Estimation with Small UAVs in Precision Agriculture. Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]