BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32365999)

  • 1. A Novel Method for Estimating Monocular Depth Using Cycle GAN and Segmentation.
    Kwak DH; Lee SH
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masked GAN for Unsupervised Depth and Pose Prediction With Scale Consistency.
    Zhao C; Yen GG; Sun Q; Zhang C; Tang Y
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5392-5403. PubMed ID: 33361009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocular Depth Estimation Using a Laplacian Image Pyramid with Local Planar Guidance Layers.
    Choi YH; Kee SC
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Monocular Depth Estimation Based on Content and Contextual Features.
    Abdulwahab S; Rashwan HA; Sharaf N; Khalid S; Puig D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive Hard-Mining Network for Monocular Depth Estimation.
    Zhang Z; Xu C; Yang J; Gao J; Cui Z
    IEEE Trans Image Process; 2018 Aug; 27(8):3691-3702. PubMed ID: 29698202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multitask GANs for Semantic Segmentation and Depth Completion With Cycle Consistency.
    Zhang C; Tang Y; Zhao C; Sun Q; Ye Z; Kurths J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5404-5415. PubMed ID: 33979291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pix2Pix-Based Monocular Depth Estimation for Drones with Optical Flow on AirSim.
    Shimada T; Nishikawa H; Kong X; Tomiyama H
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.
    Cai J; Zhang Z; Cui L; Zheng Y; Yang L
    Med Image Anal; 2019 Feb; 52():174-184. PubMed ID: 30594770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Supervised Adversarial Monocular Depth Estimation.
    Ji R; Li K; Wang Y; Sun X; Guo F; Guo X; Wu Y; Huang F; Luo J
    IEEE Trans Pattern Anal Mach Intell; 2020 Oct; 42(10):2410-2422. PubMed ID: 31442969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung Cancer Segmentation With Transfer Learning: Usefulness of a Pretrained Model Constructed From an Artificial Dataset Generated Using a Generative Adversarial Network.
    Nishio M; Fujimoto K; Matsuo H; Muramatsu C; Sakamoto R; Fujita H
    Front Artif Intell; 2021; 4():694815. PubMed ID: 34337394
    [No Abstract]   [Full Text] [Related]  

  • 13. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SFA-MDEN: Semantic-Feature-Aided Monocular Depth Estimation Network Using Dual Branches.
    Wang R; Zou J; Wen JZ
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Method for Monocular Depth Estimation Using an Hourglass Neck Module.
    Oh SJ; Lee SH
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distorted underwater image reconstruction for an autonomous underwater vehicle based on a self-attention generative adversarial network.
    Li T; Yang Q; Rong S; Chen L; He B
    Appl Opt; 2020 Nov; 59(32):10049-10060. PubMed ID: 33175779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint estimation of depth and motion from a monocular endoscopy image sequence using a multi-loss rebalancing network.
    Liu S; Fan J; Song D; Fu T; Lin Y; Xiao D; Song H; Wang Y; Yang J
    Biomed Opt Express; 2022 May; 13(5):2707-2727. PubMed ID: 35774318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth Map Upsampling via Multi-Modal Generative Adversarial Network.
    Tan DS; Lin JM; Lai YC; Ilao J; Hua KL
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting Depth From Single Monocular Images for Object Detection and Semantic Segmentation.
    Yuanzhouhan Cao ; Chunhua Shen ; Heng Tao Shen
    IEEE Trans Image Process; 2017 Feb; 26(2):836-846. PubMed ID: 28113765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Monocular Depth Estimation Methods-A State-of-the-Art Review.
    Khan F; Salahuddin S; Javidnia H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.