BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32366103)

  • 1. How Do Local Reactivity Descriptors Shape the Potential Energy Surface Associated with Chemical Reactions? The Valence Bond Delocalization Perspective.
    Stuyver T; De Proft F; Geerlings P; Shaik S
    J Am Chem Soc; 2020 Jun; 142(22):10102-10113. PubMed ID: 32366103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unifying Conceptual Density Functional and Valence Bond Theory: The Hardness-Softness Conundrum Associated with Protonation Reactions and Uncovering Complementary Reactivity Modes.
    Stuyver T; Shaik S
    J Am Chem Soc; 2020 Nov; 142(47):20002-20013. PubMed ID: 33180491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction to "How Do Local Reactivity Descriptors Shape the Potential Energy Surface Associated with Chemical Reactions? The Valence Bond Delocalization Perspective".
    Stuyver T; De Proft F; Geerlings P; Shaik S
    J Am Chem Soc; 2021 Apr; 143(13):5277. PubMed ID: 33761248
    [No Abstract]   [Full Text] [Related]  

  • 4. Decoding real space bonding descriptors in valence bond language.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 May; 20(18):12368-12372. PubMed ID: 29714368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of DFT-based reactivity descriptors for rationalizing radical addition reactions: applicability and difficulties.
    Chandra AK; Nguyen MT
    Faraday Discuss; 2007; 135():191-201; discussion 237-59, 503-6. PubMed ID: 17328429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical reactivity in the framework of pair density functional theories.
    Otero N; Mandado M
    J Comput Chem; 2012 May; 33(13):1240-51. PubMed ID: 22392363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity and a Charge-Transfer Model Analysis in Aminopolycarboxylic-Metal Complexes.
    Redjem N; Lakehal S; Lakehal A; Morell C; Merzoud L; Chermette H
    Inorg Chem; 2022 Mar; 61(11):4673-4680. PubMed ID: 35254062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual DFT and TDDFT study on electronic structure and reactivity of pure and sulfur doped (CrO
    Garg S; Kaur N; Goel N
    J Mol Graph Model; 2020 Sep; 99():107617. PubMed ID: 32442905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Reactivity of Ambident Nucleophiles: Marcus Theory or Hard and Soft Acids and Bases Principle?
    Wang YG; Barnes EC; Kaya S; Sharma V
    J Comput Chem; 2019 Dec; 40(31):2761-2777. PubMed ID: 31429098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory.
    Geerlings P; Ayers PW; Toro-Labbé A; Chattaraj PK; De Proft F
    Acc Chem Res; 2012 May; 45(5):683-95. PubMed ID: 22283422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces.
    Cembran A; Song L; Mo Y; Gao J
    J Chem Theory Comput; 2009 Oct; 5(10):2702-2716. PubMed ID: 20228960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photostability of Coumarin Laser Dyes - a Mechanistic Study Using Global and Local Reactivity Descriptors.
    Mishra VR; Sekar N
    J Fluoresc; 2017 May; 27(3):1101-1108. PubMed ID: 28213727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reactivity of quinmerac herbicide through the Fukui function.
    Mendoza-Huizar LH
    Acta Chim Slov; 2014; 61(4):694-702. PubMed ID: 25551708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hardness and softness reactivity kernels within the spin-polarized density-functional theory.
    Chamorro E; De Proft F; Geerlings P
    J Chem Phys; 2005 Oct; 123(15):154104. PubMed ID: 16252939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the substitution effect on the CoMFA results within the framework of density functional theory (DFT).
    Morales-Bayuelo A
    J Mol Model; 2016 Jul; 22(7):164. PubMed ID: 27329189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective.
    Vijayaraj R; Subramanian V; Chattaraj PK
    J Chem Theory Comput; 2009 Oct; 5(10):2744-53. PubMed ID: 26631787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambident Nucleophilic Substitution: Understanding Non-HSAB Behavior through Activation Strain and Conceptual DFT Analyses.
    Bettens T; Alonso M; De Proft F; Hamlin TA; Bickelhaupt FM
    Chemistry; 2020 Mar; 26(17):3884-3893. PubMed ID: 31957943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conceptual DFT study of the molecular properties of glycating carbonyl compounds.
    Frau J; Glossman-Mitnik D
    Chem Cent J; 2017; 11():8. PubMed ID: 28123450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bonding reactivity descriptor from conceptual density functional theory and its applications to elucidate bonding formation.
    Zhou PP; Liu S; Ayers PW; Zhang RQ
    J Chem Phys; 2017 Oct; 147(13):134303. PubMed ID: 28987121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.