BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32366679)

  • 1. Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning.
    Reis AH; Sokol SY
    Development; 2020 May; 147(10):. PubMed ID: 32366679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction.
    Jin YR; Turcotte TJ; Crocker AL; Han XH; Yoon JK
    Dev Biol; 2011 Apr; 352(1):1-13. PubMed ID: 21237142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification.
    Reis AH; Sokol SY
    Sci Rep; 2021 Jun; 11(1):13433. PubMed ID: 34183732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient.
    Lee H; Camuto CM; Niehrs C
    Nat Commun; 2024 Feb; 15(1):1003. PubMed ID: 38307837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway.
    Ossipova O; Itoh K; Radu A; Ezan J; Sokol SY
    Development; 2020 Sep; 147(17):. PubMed ID: 32859582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development.
    Kolpakova A; Katz S; Keren A; Rojtblat A; Bengal E
    PLoS One; 2013; 8(7):e69693. PubMed ID: 23894525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis.
    Takebayashi-Suzuki K; Kitayama A; Terasaka-Iioka C; Ueno N; Suzuki A
    Dev Biol; 2011 Dec; 360(1):11-29. PubMed ID: 21958745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.
    Hikasa H; Shibata M; Hiratani I; Taira M
    Development; 2002 Nov; 129(22):5227-39. PubMed ID: 12399314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling.
    Zhang Y; Ding Y; Chen YG; Tao Q
    Dev Biol; 2014 Aug; 392(1):15-25. PubMed ID: 24833518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos.
    Lee SY; Lim SK; Cha SW; Yoon J; Lee SH; Lee HS; Park JB; Lee JY; Kim SC; Kim J
    Differentiation; 2011 Sep; 82(2):99-107. PubMed ID: 21684060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus.
    Fletcher RB; Harland RM
    Dev Dyn; 2008 May; 237(5):1243-54. PubMed ID: 18386826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins.
    Li HY; Grifone R; Saquet A; Carron C; Shi DL
    Development; 2013 Dec; 140(24):4903-13. PubMed ID: 24301465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation.
    Daniels M; Shimizu K; Zorn AM; Ohnuma S
    Development; 2004 Nov; 131(22):5613-26. PubMed ID: 15496439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis.
    Sridharan J; Haremaki T; Jin Y; Teegala S; Weinstein DC
    Mech Dev; 2012 Jul; 129(5-8):136-46. PubMed ID: 22609272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NSrp70 is significant for embryonic growth and development, being a crucial factor for gastrulation and mesoderm induction.
    Lee SH; Kim C; Lee HK; Kim YK; Ismail T; Jeong Y; Park K; Park MJ; Park DS; Lee HS
    Biochem Biophys Res Commun; 2016 Oct; 479(2):238-244. PubMed ID: 27638308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning.
    Nutt SL; Dingwell KS; Holt CE; Amaya E
    Genes Dev; 2001 May; 15(9):1152-66. PubMed ID: 11331610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation.
    Kjolby RAS; Harland RM
    Dev Biol; 2017 Jun; 426(2):165-175. PubMed ID: 27091726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.