These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 32366839)
41. Antibiotic Resistance, Biofilm Formation, and Intracellular Survival As Possible Determinants of Persistent or Recurrent Infections by Nguyen TK; Argudín MA; Deplano A; Nhung PH; Nguyen HA; Tulkens PM; Dodemont M; Van Bambeke F Microb Drug Resist; 2020 Jun; 26(6):537-544. PubMed ID: 31825276 [TBL] [Abstract][Full Text] [Related]
42. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. Jo A; Ahn J BMC Microbiol; 2016 Jul; 16(1):170. PubMed ID: 27473500 [TBL] [Abstract][Full Text] [Related]
43. Antibiotic resistance and clonal diversity of invasive Staphylococcus aureus in the rural Ashanti Region, Ghana. Dekker D; Wolters M; Mertens E; Boahen KG; Krumkamp R; Eibach D; Schwarz NG; Adu-Sarkodie Y; Rohde H; Christner M; Marks F; Sarpong N; May J BMC Infect Dis; 2016 Nov; 16(1):720. PubMed ID: 27899074 [TBL] [Abstract][Full Text] [Related]
44. Antibiotic Resistance and the MRSA Problem. Vestergaard M; Frees D; Ingmer H Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30900543 [No Abstract] [Full Text] [Related]
45. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells. Sharma B; Brown AV; Matluck NE; Hu LT; Lewis K Antimicrob Agents Chemother; 2015 Aug; 59(8):4616-24. PubMed ID: 26014929 [TBL] [Abstract][Full Text] [Related]
46. A Genetic Determinant of Persister Cell Formation in Bacterial Pathogens. Cameron DR; Shan Y; Zalis EA; Isabella V; Lewis K J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29941425 [TBL] [Abstract][Full Text] [Related]
47. Glucose Augments Killing Efficiency of Daptomycin Challenged Staphylococcus aureus Persisters. Prax M; Mechler L; Weidenmaier C; Bertram R PLoS One; 2016; 11(3):e0150907. PubMed ID: 26960193 [TBL] [Abstract][Full Text] [Related]
48. Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening. Mina EG; Marques CN Sci Rep; 2016 Aug; 6():31342. PubMed ID: 27506163 [TBL] [Abstract][Full Text] [Related]
49. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Mechler L; Herbig A; Paprotka K; Fraunholz M; Nieselt K; Bertram R Antimicrob Agents Chemother; 2015 Sep; 59(9):5366-76. PubMed ID: 26100694 [TBL] [Abstract][Full Text] [Related]
50. Nonstable Staphylococcus aureus Small-Colony Variants Are Induced by Low pH and Sensitized to Antimicrobial Therapy by Phagolysosomal Alkalinization. Leimer N; Rachmühl C; Palheiros Marques M; Bahlmann AS; Furrer A; Eichenseher F; Seidl K; Matt U; Loessner MJ; Schuepbach RA; Zinkernagel AS J Infect Dis; 2016 Jan; 213(2):305-13. PubMed ID: 26188074 [TBL] [Abstract][Full Text] [Related]
51. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. Ooi N; Miller K; Randall C; Rhys-Williams W; Love W; Chopra I J Antimicrob Chemother; 2010 Jan; 65(1):72-8. PubMed ID: 19889790 [TBL] [Abstract][Full Text] [Related]
52. Molecular physiological characterization of the dynamics of persister formation in Liu S; Huang Y; Jensen S; Laman P; Kramer G; Zaat SAJ; Brul S Antimicrob Agents Chemother; 2024 Jan; 68(1):e0085023. PubMed ID: 38051079 [TBL] [Abstract][Full Text] [Related]
53. Clinical Mutations That Partially Activate the Stringent Response Confer Multidrug Tolerance in Bryson D; Hettle AG; Boraston AB; Hobbs JK Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31871080 [TBL] [Abstract][Full Text] [Related]
54. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. Liu X; Hu Y; Pai PJ; Chen D; Lam H J Proteome Res; 2014 Mar; 13(3):1223-33. PubMed ID: 24156611 [TBL] [Abstract][Full Text] [Related]
55. Daptomycin Resistance and Tolerance Due to Loss of Function in Staphylococcus aureus Barros EM; Martin MJ; Selleck EM; Lebreton F; Sampaio JLM; Gilmore MS Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30397055 [TBL] [Abstract][Full Text] [Related]
56. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. Anderson KL; Roberts C; Disz T; Vonstein V; Hwang K; Overbeek R; Olson PD; Projan SJ; Dunman PM J Bacteriol; 2006 Oct; 188(19):6739-56. PubMed ID: 16980476 [TBL] [Abstract][Full Text] [Related]
57. One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus. Chowdhuri AR; Das B; Kumar A; Tripathy S; Roy S; Sahu SK Nanotechnology; 2017 Mar; 28(9):095102. PubMed ID: 28139466 [TBL] [Abstract][Full Text] [Related]
58. Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase. Wang Y; Bojer MS; George SE; Wang Z; Jensen PR; Wolz C; Ingmer H Sci Rep; 2018 Jul; 8(1):10849. PubMed ID: 30022089 [TBL] [Abstract][Full Text] [Related]
59. Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages. Flannagan RS; Kuiack RC; McGavin MJ; Heinrichs DE mBio; 2018 Jul; 9(4):. PubMed ID: 30018109 [TBL] [Abstract][Full Text] [Related]
60. Topical Antibiotic Use Coselects for the Carriage of Mobile Genetic Elements Conferring Resistance to Unrelated Antimicrobials in Staphylococcus aureus. Carter GP; Schultz MB; Baines SL; Gonçalves da Silva A; Heffernan H; Tiong A; Pham PH; Monk IR; Stinear TP; Howden BP; Williamson DA Antimicrob Agents Chemother; 2018 Feb; 62(2):. PubMed ID: 29229636 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]