BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32367083)

  • 1. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection.
    Zhang Y; Zhou Y; Li Z; Chen H; Zhang L; Fan J
    Nanoscale; 2020 May; 12(18):10026-10034. PubMed ID: 32367083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA translocation through single-layer boron nitride nanopores.
    Gu Z; Zhang Y; Luan B; Zhou R
    Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical Effect in 2D Nanopores.
    Liu K; Lihter M; Sarathy A; Caneva S; Qiu H; Deiana D; Tileli V; Alexander DTL; Hofmann S; Dumcenco D; Kis A; Leburton JP; Radenovic A
    Nano Lett; 2017 Jul; 17(7):4223-4230. PubMed ID: 28592108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of DNA detection using graphene nanopores.
    Sathe C; Zou X; Leburton JP; Schulten K
    ACS Nano; 2011 Nov; 5(11):8842-51. PubMed ID: 21981556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation on DNA sequencing using functionalized graphene nanopores.
    Yu YS; Lu X; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2018 Apr; 20(14):9063-9069. PubMed ID: 29446423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore.
    Balasubramanian R; Pal S; Rao A; Naik A; Chakraborty B; Maiti PK; Varma MM
    ACS Appl Bio Mater; 2021 Jan; 4(1):451-461. PubMed ID: 35014296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of hexagonal boron nitride based 2D nanopore sensor for the assessment of electro-chemical responsiveness of human serum transferrin protein.
    Saharia J; Bandara YMNDY; Lee JS; Wang Q; Kim MJ; Kim MJ
    Electrophoresis; 2020 Apr; 41(7-8):630-637. PubMed ID: 31709550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron nitride nanopores: highly sensitive DNA single-molecule detectors.
    Liu S; Lu B; Zhao Q; Li J; Gao T; Chen Y; Zhang Y; Liu Z; Fan Z; Yang F; You L; Yu D
    Adv Mater; 2013 Sep; 25(33):4549-54. PubMed ID: 23775629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-Scale Fluidic Diodes Based on Triangular Nanopores in Bilayer Hexagonal Boron Nitride.
    Luan B; Zhou R
    Nano Lett; 2019 Feb; 19(2):977-982. PubMed ID: 30628792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopores in Atomically Thin 2D Nanosheets Limit Aqueous Single-Stranded DNA Transport.
    Smolyanitsky A; Luan B
    Phys Rev Lett; 2021 Sep; 127(13):138103. PubMed ID: 34623840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.
    Bafna JA; Soni GV
    PLoS One; 2016; 11(6):e0157399. PubMed ID: 27285088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA translocation through hydrophilic nanopore in hexagonal boron nitride.
    Zhou Z; Hu Y; Wang H; Xu Z; Wang W; Bai X; Shan X; Lu X
    Sci Rep; 2013 Nov; 3():3287. PubMed ID: 24256703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
    Luan B; Kuroda MA
    ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore.
    Yu YS; Ren Q; Tan RR; Ding HM
    Phys Chem Chem Phys; 2023 Oct; 25(41):28034-28042. PubMed ID: 37846110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate.
    Park KB; Kim HJ; Kim HM; Han SA; Lee KH; Kim SW; Kim KB
    Nanoscale; 2016 Mar; 8(10):5755-63. PubMed ID: 26909465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.