BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32367255)

  • 21. Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response.
    Paone C; Rudeck S; Etard C; Strähle U; Rottbauer W; Just S
    Biochem Biophys Res Commun; 2018 Feb; 496(2):339-345. PubMed ID: 29331378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent Reporter Zebrafish Line for Estrogenic Compound Screening Generated Using a CRISPR/Cas9-Mediated Knock-in System.
    Abdelmoneim A; Clark CL; Mukai M
    Toxicol Sci; 2020 Feb; 173(2):336-346. PubMed ID: 31688941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish.
    Auer TO; Duroure K; Concordet JP; Del Bene F
    Nat Protoc; 2014 Dec; 9(12):2823-40. PubMed ID: 25393779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model.
    Yang Z; Chen S; Xue S; Li X; Sun Z; Yang Y; Hu X; Geng T; Cui H
    Biotechnol Lett; 2018 Dec; 40(11-12):1507-1518. PubMed ID: 30244429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline.
    Grunwald HA; Gantz VM; Poplawski G; Xu XS; Bier E; Cooper KL
    Nature; 2019 Feb; 566(7742):105-109. PubMed ID: 30675057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system.
    Song Y; Yuan L; Wang Y; Chen M; Deng J; Lv Q; Sui T; Li Z; Lai L
    Cell Mol Life Sci; 2016 Aug; 73(15):2959-68. PubMed ID: 26817461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.
    Yin L; Maddison LA; Li M; Kara N; LaFave MC; Varshney GK; Burgess SM; Patton JG; Chen W
    Genetics; 2015 Jun; 200(2):431-41. PubMed ID: 25855067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9-induced gene knockout in zebrafish.
    Medishetti R; Balamurugan K; Yadavalli K; Rani R; Sevilimedu A; Challa AK; Parsa K; Chatti K
    STAR Protoc; 2022 Dec; 3(4):101779. PubMed ID: 36317180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9.
    Fang J; Chen T; Pan Q; Wang Q
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):242-246. PubMed ID: 29873175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expansion of CRISPR/Cas9 genome targeting sites in zebrafish by Csy4-based RNA processing.
    Qin W; Liang F; Feng Y; Bai H; Yan R; Li S; Lin S
    Cell Res; 2015 Sep; 25(9):1074-7. PubMed ID: 26238401
    [No Abstract]   [Full Text] [Related]  

  • 33. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish.
    Shiraki T; Kawakami K
    Sci Rep; 2018 Sep; 8(1):13366. PubMed ID: 30190522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of novel domain-specific mutations in the zebrafish
    Turner AN; Andersen RS; Bookout IE; Brashear LN; Davis JC; Gahan DM; Davis JC; Gotham JP; Hijaz BA; Kaushik AS; Mcgill JB; Miller VL; Moseley ZP; Nowell CL; Patel RK; Rodgers MC; Patel RK; Shihab YA; Walker AP; Glover SR; Foster SD; Challa AK
    J Genet; 2018 Dec; 97(5):1315-1325. PubMed ID: 30555080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish.
    Yao X; Liu X; Zhang Y; Li Y; Zhao C; Yao S; Wei Y
    Hum Gene Ther; 2017 Jul; 28(7):588-597. PubMed ID: 28478735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative GFP fluorescence as an indicator of arsenite developmental toxicity in mosaic heat shock protein 70 transgenic zebrafish.
    Seok SH; Baek MW; Lee HY; Kim DJ; Na YR; Noh KJ; Park SH; Lee HK; Lee BH; Ryu DY; Park JH
    Toxicol Appl Pharmacol; 2007 Dec; 225(2):154-61. PubMed ID: 17905400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abnormal development of zebrafish after knockout and knockdown of ribosomal protein L10a.
    Palasin K; Uechi T; Yoshihama M; Srisowanna N; Choijookhuu N; Hishikawa Y; Kenmochi N; Chotigeat W
    Sci Rep; 2019 Dec; 9(1):18130. PubMed ID: 31792295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System.
    Aksoy YA; Yang B; Chen W; Hung T; Kuchel RP; Zammit NW; Grey ST; Goldys EM; Deng W
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52433-52444. PubMed ID: 33174413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and functional analysis of the promoter of the amphioxus Hsp70a gene.
    Li D; Li G; Wang K; Liu X; Li W; Chen X; Wang Y
    Gene; 2012 Nov; 510(1):39-46. PubMed ID: 22947341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology.
    De Santis F; Di Donato V; Del Bene F
    Methods Cell Biol; 2016; 135():171-88. PubMed ID: 27443925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.