These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32367467)
1. Plasma Isolation in a Syringe by Conformal Integration of Inertial Microfluidics. Han JY; DeVoe DL Ann Biomed Eng; 2021 Jan; 49(1):139-148. PubMed ID: 32367467 [TBL] [Abstract][Full Text] [Related]
2. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Xiang N; Ni Z Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099 [TBL] [Abstract][Full Text] [Related]
3. Inertial microfluidics for continuous particle separation in spiral microchannels. Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752 [TBL] [Abstract][Full Text] [Related]
4. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196 [TBL] [Abstract][Full Text] [Related]
6. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells. Chen H Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230 [TBL] [Abstract][Full Text] [Related]
7. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666 [TBL] [Abstract][Full Text] [Related]
8. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics. Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188 [TBL] [Abstract][Full Text] [Related]
9. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry. Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295 [TBL] [Abstract][Full Text] [Related]
10. Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting. Xiang N; Ni Z Talanta; 2021 Dec; 235():122807. PubMed ID: 34517664 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622 [TBL] [Abstract][Full Text] [Related]
12. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel. Liu D; Chen S; Luo X Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265 [TBL] [Abstract][Full Text] [Related]
13. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Lee MG; Shin JH; Bae CY; Choi S; Park JK Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
15. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing. Hahn YK; Hong D; Kang JH; Choi S Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310 [TBL] [Abstract][Full Text] [Related]
17. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177 [TBL] [Abstract][Full Text] [Related]
18. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Wu Z; Chen Y; Wang M; Chung AJ Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506 [TBL] [Abstract][Full Text] [Related]
19. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
20. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Zhou J; Giridhar PV; Kasper S; Papautsky I Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]