These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32368329)
41. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Wu H; Gordon JA; Whitfield TW; Tai PW; van Wijnen AJ; Stein JL; Stein GS; Lian JB Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):438-449. PubMed ID: 28077316 [TBL] [Abstract][Full Text] [Related]
42. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy. Recamonde-Mendoza M; Werhli AV; Biolo A Gene; 2019 May; 698():157-169. PubMed ID: 30844478 [TBL] [Abstract][Full Text] [Related]
43. Overall Downregulation of mRNAs and Enrichment of H3K4me3 Change Near Genome-Wide Association Study Signals in Systemic Lupus Erythematosus: Cell-Specific Effects. Zhang Z; Shi L; Song L; Maurer K; Petri MA; Sullivan KE Front Immunol; 2018; 9():497. PubMed ID: 29593737 [TBL] [Abstract][Full Text] [Related]
44. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846 [TBL] [Abstract][Full Text] [Related]
45. Detecting TF-miRNA-gene network based modules for 5hmC and 5mC brain samples: a intra- and inter-species case-study between human and rhesus. Maulik U; Sen S; Mallik S; Bandyopadhyay S BMC Genet; 2018 Jan; 19(1):9. PubMed ID: 29357837 [TBL] [Abstract][Full Text] [Related]
46. TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. Puente-Santamaria L; Wasserman WW; Del Peso L Bioinformatics; 2019 Dec; 35(24):5339-5340. PubMed ID: 31347689 [TBL] [Abstract][Full Text] [Related]
47. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Wang P; Qin J; Qin Y; Zhu Y; Wang LY; Li MJ; Zhang MQ; Wang J Nucleic Acids Res; 2015 Jul; 43(W1):W264-9. PubMed ID: 25916854 [TBL] [Abstract][Full Text] [Related]
49. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data. Wang R; Wang Y; Zhang X; Zhang Y; Du X; Fang Y; Li G BMC Genomics; 2019 May; 20(Suppl 3):296. PubMed ID: 32039697 [TBL] [Abstract][Full Text] [Related]
50. Integrative single-cell omics analyses reveal epigenetic heterogeneity in mouse embryonic stem cells. Luo Y; He J; Xu X; Sun MA; Wu X; Lu X; Xie H PLoS Comput Biol; 2018 Mar; 14(3):e1006034. PubMed ID: 29561833 [TBL] [Abstract][Full Text] [Related]
51. The regulatory control of Cebpa enhancers and silencers in the myeloid and red-blood cell lineages. Repele A; Krueger S; Bhattacharyya T; Tuineau MY; Manu PLoS One; 2019; 14(6):e0217580. PubMed ID: 31181110 [TBL] [Abstract][Full Text] [Related]
52. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Gu C; Liu S; Wu Q; Zhang L; Guo F Cell Res; 2019 Feb; 29(2):110-123. PubMed ID: 30560925 [TBL] [Abstract][Full Text] [Related]
53. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
54. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression. Arnaiz O; Van Dijk E; Bétermier M; Lhuillier-Akakpo M; de Vanssay A; Duharcourt S; Sallet E; Gouzy J; Sperling L BMC Genomics; 2017 Jun; 18(1):483. PubMed ID: 28651633 [TBL] [Abstract][Full Text] [Related]
55. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs. Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617 [TBL] [Abstract][Full Text] [Related]
56. On the problem of confounders in modeling gene expression. Schmidt F; Schulz MH Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962 [TBL] [Abstract][Full Text] [Related]
57. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Bhutada I; Khambati F; Cheng SY; Tiek DM; Duckett D; Lawrence H; Vogelbaum MA; Mo Q; Chellappan SP; Padmanabhan J Neuro Oncol; 2024 Jan; 26(1):70-84. PubMed ID: 37551745 [TBL] [Abstract][Full Text] [Related]
58. Spatial profiling of chromatin accessibility in mouse and human tissues. Deng Y; Bartosovic M; Ma S; Zhang D; Kukanja P; Xiao Y; Su G; Liu Y; Qin X; Rosoklija GB; Dwork AJ; Mann JJ; Xu ML; Halene S; Craft JE; Leong KW; Boldrini M; Castelo-Branco G; Fan R Nature; 2022 Sep; 609(7926):375-383. PubMed ID: 35978191 [TBL] [Abstract][Full Text] [Related]
59. A multimodal cell census and atlas of the mammalian primary motor cortex. BRAIN Initiative Cell Census Network (BICCN) Nature; 2021 Oct; 598(7879):86-102. PubMed ID: 34616075 [TBL] [Abstract][Full Text] [Related]
60. Epigenetic regulation of neuronal cell specification inferred with single cell "Omics" data. Yin L; Banerjee S; Fan J; He J; Lu X; Xie H Comput Struct Biotechnol J; 2020; 18():942-952. PubMed ID: 32368329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]