These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32368714)

  • 1. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in
    Schenck CA; Westphal J; Jayaraman D; Garcia K; Wen J; Mysore KS; Ané JM; Sumner LW; Maeda HA
    Plant Direct; 2020 May; 4(5):e00218. PubMed ID: 32368714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes.
    Schenck CA; Chen S; Siehl DL; Maeda HA
    Nat Chem Biol; 2015 Jan; 11(1):52-7. PubMed ID: 25402771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes.
    Schenck CA; Men Y; Maeda HA
    Front Mol Biosci; 2017; 4():73. PubMed ID: 29164132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants.
    Schenck CA; Holland CK; Schneider MR; Men Y; Lee SG; Jez JM; Maeda HA
    Nat Chem Biol; 2017 Sep; 13(9):1029-1035. PubMed ID: 28671678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota).
    Lopez-Nieves S; Pringle A; Maeda HA
    Arch Biochem Biophys; 2019 Apr; 665():12-19. PubMed ID: 30771296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine biosynthesis, metabolism, and catabolism in plants.
    Schenck CA; Maeda HA
    Phytochemistry; 2018 May; 149():82-102. PubMed ID: 29477627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Mechanism of Prephenate Dehydrogenase from the Alternative Tyrosine Biosynthesis Pathway in Plants.
    Holland CK; Jez JM
    Chembiochem; 2018 Mar; ():. PubMed ID: 29601138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales.
    Lopez-Nieves S; Yang Y; Timoneda A; Wang M; Feng T; Smith SA; Brockington SF; Maeda HA
    New Phytol; 2018 Jan; 217(2):896-908. PubMed ID: 28990194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis.
    Rippert P; Puyaubert J; Grisollet D; Derrier L; Matringe M
    Plant Physiol; 2009 Mar; 149(3):1251-60. PubMed ID: 19136569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.
    Wang M; Toda K; Maeda HA
    Phytochemistry; 2016 Dec; 132():16-25. PubMed ID: 27726859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta.
    Lopez-Nieves S; El-Azaz J; Men Y; Holland CK; Feng T; Brockington SF; Jez JM; Maeda HA
    Plant J; 2022 Feb; 109(4):844-855. PubMed ID: 34807484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase.
    Connelly JA; Conn EE
    Z Naturforsch C J Biosci; 1986; 41(1-2):69-78. PubMed ID: 2939643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain.
    Shabalin IG; Gritsunov A; Hou J; Sławek J; Miks CD; Cooper DR; Minor W; Christendat D
    FEBS J; 2020 Jun; 287(11):2235-2255. PubMed ID: 31750992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.
    Xie G; Bonner CA; Jensen RA
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 Jan; 125(1):65-83. PubMed ID: 11790331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola.
    Xia T; Zhao G; Fischer RS; Jensen RA
    J Gen Microbiol; 1992 Jul; 138(7):1309-16. PubMed ID: 1512561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.
    Byng GS; Whitaker RJ; Shapiro CL; Jensen RA
    Mol Cell Biol; 1981 May; 1(5):426-38. PubMed ID: 6152855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions.
    Hidalgo-Castellanos J; Duque AS; Burgueño A; Herrera-Cervera JA; Fevereiro P; López-Gómez M
    J Plant Physiol; 2019 Oct; 241():153034. PubMed ID: 31493718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.
    Shlaifer I; Turnbull JL
    Extremophiles; 2016 Jul; 20(4):503-14. PubMed ID: 27290727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition.
    Sun W; Shahinas D; Bonvin J; Hou W; Kimber MS; Turnbull J; Christendat D
    J Biol Chem; 2009 May; 284(19):13223-32. PubMed ID: 19279014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.