These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 32368825)
41. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
42. Triazine-Based Large-Sized Single-Crystalline Two-Dimensional Covalent Organic Framework for High-Performance Lithium-Ion Batteries. Hou J; Liu H; Gao M; Pan Q; Zhao Y Angew Chem Int Ed Engl; 2024 Aug; ():e202414566. PubMed ID: 39212155 [TBL] [Abstract][Full Text] [Related]
43. Hybrid Acid/alkali All Covalent Organic Frameworks Battery. Xu Y; Cai P; Chen K; Chen Q; Wen Z; Chen L Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202215584. PubMed ID: 36840681 [TBL] [Abstract][Full Text] [Related]
44. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784 [TBL] [Abstract][Full Text] [Related]
47. High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium Batteries. Shehab MK; El-Kaderi HM ACS Appl Mater Interfaces; 2024 Mar; 16(12):14750-14758. PubMed ID: 38498858 [TBL] [Abstract][Full Text] [Related]
48. Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Lv J; Tan YX; Xie J; Yang R; Yu M; Sun S; Li MD; Yuan D; Wang Y Angew Chem Int Ed Engl; 2018 Sep; 57(39):12716-12720. PubMed ID: 30094899 [TBL] [Abstract][Full Text] [Related]
49. Selection principles of polymeric frameworks for solid-state electrolytes of non-aqueous aluminum-ion batteries. Yu Z; Xie Y; Wang W; Hong J; Ge J Front Chem; 2023; 11():1190102. PubMed ID: 37113502 [TBL] [Abstract][Full Text] [Related]
50. Ionothermal Synthesis of Fully Conjugated Covalent Organic Frameworks for High-Capacity and Ultrastable Potassium-Ion Batteries. Yang X; Gong L; Wang K; Ma S; Liu W; Li B; Li N; Pan H; Chen X; Wang H; Liu J; Jiang J Adv Mater; 2022 Dec; 34(50):e2207245. PubMed ID: 36189855 [TBL] [Abstract][Full Text] [Related]
51. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks. Geng Q; Wang H; Wang J; Hong J; Sun W; Wu Y; Wang Y Small Methods; 2022 Aug; 6(8):e2200314. PubMed ID: 35691937 [TBL] [Abstract][Full Text] [Related]
52. Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li Jiang J; Li H; Huang J; Li K; Zeng J; Yang Y; Li J; Wang Y; Wang J; Zhao J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28486-28494. PubMed ID: 28770985 [TBL] [Abstract][Full Text] [Related]
53. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540 [TBL] [Abstract][Full Text] [Related]
54. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. Zhang K; Lee TH; Cha JH; Varma RS; Choi JW; Jang HW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13573. PubMed ID: 31537878 [TBL] [Abstract][Full Text] [Related]
55. Carbon Nanoscrolls for Aluminum Battery. Liu Z; Wang J; Ding H; Chen S; Yu X; Lu B ACS Nano; 2018 Aug; 12(8):8456-8466. PubMed ID: 30048113 [TBL] [Abstract][Full Text] [Related]
56. All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS Hu Y; Huang H; Yu D; Wang X; Li L; Hu H; Zhu X; Peng S; Wang L Nanomicro Lett; 2021 Jul; 13(1):159. PubMed ID: 34297240 [TBL] [Abstract][Full Text] [Related]
57. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
58. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries. Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195 [TBL] [Abstract][Full Text] [Related]
59. Covalent organic frameworks converted N, B co-doped carbon spheres with excellent lithium ion storage performance at high current density. Ni B; Li Y; Chen T; Lu T; Pan L J Colloid Interface Sci; 2019 Apr; 542():213-221. PubMed ID: 30753944 [TBL] [Abstract][Full Text] [Related]
60. Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Li-S Batteries. Royuela S; Almarza J; Mancheño MJ; Pérez-Flores JC; Michel EG; Ramos MM; Zamora F; Ocón P; Segura JL Chemistry; 2019 Sep; 25(53):12394-12404. PubMed ID: 31265184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]