BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32368840)

  • 1. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography.
    Jin Z; Chen S; Dai Y; Bao C; Ye S; Zhou Y; Wang Y; Huang S; Wang Y; Shen M; Zhu D; Lu F
    J Biophotonics; 2020 Aug; 13(8):e202000104. PubMed ID: 32368840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography.
    Jin Z; Khazaeinezhad R; Zhu J; Yu J; Qu Y; He Y; Li Y; Gomez Alvarez-Arenas TE; Lu F; Chen Z
    Biomed Opt Express; 2019 Dec; 10(12):6272-6285. PubMed ID: 31853399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model.
    Han Z; Li J; Singh M; Wu C; Liu CH; Raghunathan R; Aglyamov SR; Vantipalli S; Twa MD; Larin KV
    J Mech Behav Biomed Mater; 2017 Feb; 66():87-94. PubMed ID: 27838594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal variation of corneal elasticity in healthy young human using air-puff optical coherence elastography.
    Chen S; Jin Z; Zheng G; Ye S; Wang Y; Wang W; Wang Y; Zhu D; Shen M; Lu F
    J Biophotonics; 2021 Aug; 14(8):e202000440. PubMed ID: 33389817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument.
    Singh M; Han Z; Nair A; Schill A; Twa MD; Larin KV
    J Biomed Opt; 2017 Feb; 22(2):20502. PubMed ID: 28241272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea.
    Zhu Y; Zhao Y; Shi J; Gomez Alvarez-Arenas TE; Yang H; Cai H; Zhang D; He X; Wu X
    J Biophotonics; 2023 Aug; 16(8):e202300074. PubMed ID: 37101410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
    Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography.
    Nair A; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography.
    Zhao Y; Zhu Y; Wang Y; Yang H; He X; Alvarez-Arenas TG; Li Y; Huang G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea.
    Wang S; Larin KV
    Biomed Opt Express; 2014 Nov; 5(11):3807-21. PubMed ID: 25426312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular Pressure-dependent Corneal Elasticity Measurement Using High-frequency Ultrasound.
    Osapoetra LO; Watson DM; McAleavey SA
    Ultrason Imaging; 2019 Sep; 41(5):251-270. PubMed ID: 31271117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing corneal cross-linking with reverberant 3D optical coherence elastography.
    Ge GR; Tavakol B; Usher DB; Adler DC; Rolland JP; Parker KJ
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35166086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence elastography measures the biomechanical properties of the
    Nair A; Zvietcovich F; Singh M; Weikert MP; Aglyamov SR; Larin KV
    J Biomed Opt; 2024 Jan; 29(1):016002. PubMed ID: 38223300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography.
    Mekonnen TT; Zevallos-Delgado C; Hatami M; Singh M; Aglyamov SR; Larin KV
    J Biomech; 2024 May; 169():112155. PubMed ID: 38761746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo non-contact measurement of human iris elasticity by optical coherence elastography.
    Ye S; Zhou Y; Bao C; Chen Y; Lu F; Zhu D
    J Biophotonics; 2021 Sep; 14(9):e202100116. PubMed ID: 34051066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.