These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3236891)

  • 1. Mechanical properties of the red cell membrane skeleton: analysis of axisymmetric deformations.
    Markin VS; Kozlov MM
    J Theor Biol; 1988 Jul; 133(2):147-67. PubMed ID: 3236891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network?
    Lerche D; Kozlov MM; Meier W
    Eur Biophys J; 1991; 19(6):301-9. PubMed ID: 1915155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elasticity of the human red blood cell skeleton.
    Lenormand G; Hénon S; Richert A; Siméon J; Gallet F
    Biorheology; 2003; 40(1-3):247-51. PubMed ID: 12454412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the surface area of the red cell membrane skeleton locally conserved?
    Fischer TM
    Biophys J; 1992 Feb; 61(2):298-305. PubMed ID: 1547320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of red blood cell membrane skeleton: electrical and mechanical properties.
    Kozlov MM; Markin VS
    J Theor Biol; 1987 Dec; 129(4):439-52. PubMed ID: 3455470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A; Parker KH
    J Biomech Eng; 2011 Jan; 133(1):011007. PubMed ID: 21186897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation.
    Evans EA; La Celle PL
    Blood; 1975 Jan; 45(1):29-43. PubMed ID: 803108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH; Winlove CP
    Biophys J; 1999 Dec; 77(6):3096-107. PubMed ID: 10585931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBC membrane instability for large pipette deformation. A theoretical approach.
    Kozlov MM; Lerche D; Meier W
    Biorheology; 1988; 25(6):843-56. PubMed ID: 3256363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling the shape of the skeleton in the intact red cell.
    Khodadad JK; Waugh RE; Podolski JL; Josephs R; Steck TL
    Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation.
    Alimohamadi H; Smith AS; Nowak RB; Fowler VM; Rangamani P
    PLoS Comput Biol; 2020 May; 16(5):e1007890. PubMed ID: 32453720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.