These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32368921)

  • 1. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces.
    Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y
    Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable Thermoelectric Generators Metallized with Liquid Alloy.
    Jeong SH; Cruz FJ; Chen S; Gravier L; Liu J; Wu Z; Hjort K; Zhang SL; Zhang ZB
    ACS Appl Mater Interfaces; 2017 May; 9(18):15791-15797. PubMed ID: 28453282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Cu
    Ang AKR; Yamazaki I; Hirata K; Singh S; Matsunami M; Takeuchi T
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46962-46970. PubMed ID: 37768216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Origami Heat Radiation Fin for Use in a Stretchable Thermoelectric Generator.
    Akuto M; Iwase E
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites.
    Zadan M; Malakooti MH; Majidi C
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics.
    Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.
    Ren W; Sun Y; Zhao D; Aili A; Zhang S; Shi C; Zhang J; Geng H; Zhang J; Zhang L; Xiao J; Yang R
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole Fabric-Assisted Thermoelectric Devices for Wearable Electronics.
    Hou Y; Yang Y; Wang Z; Li Z; Zhang X; Bethers B; Xiong R; Guo H; Yu H
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103574. PubMed ID: 34741444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Skin-Worn Thermoelectric Generators for Body Heat Energy Harvesting to Power Wearable Devices.
    Smith RI; Johnston ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7158-7161. PubMed ID: 34892751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts.
    Chen B; Kruse M; Xu B; Tutika R; Zheng W; Bartlett MD; Wu Y; Claussen JC
    Nanoscale; 2019 Mar; 11(12):5222-5230. PubMed ID: 30644953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Thermoelectric Generators for Field Deployments.
    Kishore RA; Nozariasbmarz A; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance n-Type Carbon Nanotubes Doped by Oxidation of Neighboring Sb
    Kim S; Mo JH; Jang KS
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43778-43784. PubMed ID: 32870650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting.
    Fan W; Shen Z; Zhang Q; Liu F; Fu C; Zhu T; Zhao X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21224-21231. PubMed ID: 35482595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cross-Plane Design for Wearable Thermoelectric Generators with High Stretchability and Output Performance.
    Yang J; Pu Y; Yu H; Ye DD; Liu X; Xin JH
    Small; 2023 Nov; 19(45):e2304529. PubMed ID: 37434332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Performance of Monolithic Chalcogenide Thermoelectric Modules for Energy Harvesting via Co-optimization of Experiment and Simulation.
    Lai H; Singh S; Peng Y; Hirata K; Ryu M; Ang AKR; Miao L; Takeuchi T
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38642-38650. PubMed ID: 35977402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Thermoelectric Energy Harvester Based on Microstructured Quasicrystalline Solar Absorber.
    Silva Oliveira V; Camboim MM; Protasio de Souza C; Silva Guedes de Lima BA; Baiocchi O; Kim HS
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Thermoelectric Fabric Based on a Stitched Carbon Nanotube Fiber.
    Park KT; Lee T; Ko Y; Cho YS; Park CR; Kim H
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6257-6264. PubMed ID: 33508940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput physical vapour deposition flexible thermoelectric generators.
    Morgan KA; Tang T; Zeimpekis I; Ravagli A; Craig C; Yao J; Feng Z; Yarmolich D; Barker C; Assender H; Hewak DW
    Sci Rep; 2019 Mar; 9(1):4393. PubMed ID: 30867530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies.
    Wen DL; Liu X; Bao JF; Li GK; Feng T; Zhang F; Liu D; Zhang XS
    ACS Appl Mater Interfaces; 2021 May; 13(18):21401-21410. PubMed ID: 33942604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Power Density Body Heat Energy Harvesting.
    Nozariasbmarz A; Kishore RA; Poudel B; Saparamadu U; Li W; Cruz R; Priya S
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40107-40113. PubMed ID: 31577411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.