BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32369047)

  • 1. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes.
    Zhi LJ; Sun AL; Tang D
    Analyst; 2020 Jun; 145(12):4164-4172. PubMed ID: 32369047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion.
    Hong G; Zhang D; He Y; Yang Y; Chen P; Yang H; Zhou Z; Liu Y; Wang Y
    Anal Bioanal Chem; 2019 Oct; 411(26):6837-6845. PubMed ID: 31471682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer.
    Han X; Lin S; Li Y; Cheng C; Han X
    Anal Chim Acta; 2020 Feb; 1098():117-124. PubMed ID: 31948574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au-coated Fe
    Guo H; Su X; Su Q; Zhuang W; You Z
    Anal Bioanal Chem; 2021 Jan; 413(1):235-244. PubMed ID: 33048173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti
    Cai G; Yu Z; Tong P; Tang D
    Nanoscale; 2019 Sep; 11(33):15659-15667. PubMed ID: 31411624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prussian blue nanoparticles with peroxidase-mimicking properties in a dual immunoassays for glycocholic acid.
    He Q; Yang H; Chen Y; Shen D; Cui X; Zhang C; Xiao H; Eremin SA; Fang Y; Zhao S
    J Pharm Biomed Anal; 2020 Aug; 187():113317. PubMed ID: 32416340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer.
    Fu G; Sanjay ST; Dou M; Li X
    Nanoscale; 2016 Mar; 8(10):5422-7. PubMed ID: 26838516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaniline@Au organic-inorganic nanohybrids with thermometer readout for photothermal immunoassay of tumor marker.
    Zhang B; Hu X; Jia Y; Li J; Zhao Z
    Mikrochim Acta; 2021 Feb; 188(3):63. PubMed ID: 33537897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal Soft Nanoballs Developed by Loading Plasmonic Cu
    Li X; Yang L; Men C; Xie YF; Liu JJ; Zou HY; Li YF; Zhan L; Huang CZ
    Anal Chem; 2019 Apr; 91(7):4444-4450. PubMed ID: 30811173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers.
    Tang J; Huang Y; Liu H; Zhang C; Tang D
    Biosens Bioelectron; 2016 May; 79():508-14. PubMed ID: 26748368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an optical immunoassay based on peroxidase-mimicking Prussian blue nanoparticles and a label-free electrochemical immunosensor for accurate and sensitive quantification of milk species adulteration.
    Seddaoui N; Attaallah R; Amine A
    Mikrochim Acta; 2022 May; 189(5):209. PubMed ID: 35501410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An In Situ Generated Prussian Blue Nanoparticle-Mediated Multimode Nanozyme-Linked Immunosorbent Assay for the Detection of Aflatoxin B1.
    Lu D; Jiang H; Zhang G; Luo Q; Zhao Q; Shi X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25738-25747. PubMed ID: 34043909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and performance of NLISA for C-reactive protein detection based on Prussian blue nanoparticle conjugates.
    Nikitina M; Khramtsov P; Bochkova M; Rayev M
    Anal Bioanal Chem; 2024 May; 416(13):3097-3106. PubMed ID: 38635074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical immunoassay platform based on MoS
    Liu R; Wang Y; Wong W; Li H; Li C
    Mikrochim Acta; 2020 Aug; 187(8):480. PubMed ID: 32743701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay.
    Lai G; Zhang H; Yu A; Ju H
    Biosens Bioelectron; 2015 Dec; 74():660-5. PubMed ID: 26201983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a new automated enzyme immunoassay for the determination of neuron-specific enolase.
    Sterk M; Oenings A; Eymann E; Roos W
    Anticancer Res; 1999; 19(4A):2759-62. PubMed ID: 10470236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposome-Embedded Cu
    Yu Z; Gong H; Xu J; Li Y; Xue F; Zeng Y; Liu X; Tang D
    Anal Chem; 2022 May; 94(20):7408-7416. PubMed ID: 35533372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric and Electrochemical Dual-Mode Detection of Thioredoxin 1 Based on the Efficient Peroxidase-Mimicking and Electrocatalytic Property of Prussian Blue Nanoparticles.
    Kim JU; Kim JM; Thamilselvan A; Nam KH; Kim MI
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone.
    Yu Z; Gong H; Li M; Tang D
    Biosens Bioelectron; 2022 Dec; 218():114751. PubMed ID: 36215735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Selective Poly(thiophene)-graft-Poly(methacrylamide) Polymer Modified ITO Electrode for Neuron Specific Enolase Detection in Human Serum.
    Aydın M; Aydın EB; Sezgintürk MK
    Macromol Biosci; 2019 Aug; 19(8):e1900109. PubMed ID: 31222894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.