These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32369048)

  • 1. Operando XANES from first-principles and its application to iridium oxide.
    Nattino F; Marzari N
    Phys Chem Chem Phys; 2020 May; 22(19):10807-10818. PubMed ID: 32369048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ir-OOOO-Ir transition state and the mechanism of the oxygen evolution reaction on IrO
    Binninger T; Doublet ML
    Energy Environ Sci; 2022 Jun; 15(6):2519-2528. PubMed ID: 36204599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides.
    Saveleva VA; Wang L; Teschner D; Jones T; Gago AS; Friedrich KA; Zafeiratos S; Schlögl R; Savinova ER
    J Phys Chem Lett; 2018 Jun; 9(11):3154-3160. PubMed ID: 29775319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with
    Pittkowski RK; Punke S; Anker AS; Bornet A; Magnard NPL; Schlegel N; Graversen LG; Quinson J; Dworzak A; Oezaslan M; Kirkensgaard JJK; Mirolo M; Drnec J; Arenz M; Jensen KMØ
    J Am Chem Soc; 2024 Oct; 146(40):27517-27527. PubMed ID: 39344255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy.
    Boubnov A; Carvalho HW; Doronkin DE; Günter T; Gallo E; Atkins AJ; Jacob CR; Grunwaldt JD
    J Am Chem Soc; 2014 Sep; 136(37):13006-15. PubMed ID: 25105343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Oxygen Evolution Activity of Ca
    Wu Y; Sun W; Zhou Z; Zaman WQ; Tariq M; Cao L; Yang J
    ACS Omega; 2018 Mar; 3(3):2902-2908. PubMed ID: 31458561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation.
    Jiang K; Luo M; Peng M; Yu Y; Lu YR; Chan TS; Liu P; de Groot FMF; Tan Y
    Nat Commun; 2020 Jun; 11(1):2701. PubMed ID: 32483164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis.
    Wang L; Du R; Liang X; Zou Y; Zhao X; Chen H; Zou X
    Adv Mater; 2024 Apr; 36(16):e2312608. PubMed ID: 38195802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of High-Surface-Area IrO
    Park YJ; Lee J; Park YS; Yang J; Jang MJ; Jeong J; Choe S; Lee JW; Kwon JD; Choi SM
    Front Chem; 2020; 8():593272. PubMed ID: 33195098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Analysis of the Unusual Stability of an IrNbO
    Spöri C; Falling LJ; Kroschel M; Brand C; Bonakdarpour A; Kühl S; Berger D; Gliech M; Jones TE; Wilkinson DP; Strasser P
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3748-3761. PubMed ID: 33442973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation.
    Gao J; Xu CQ; Hung SF; Liu W; Cai W; Zeng Z; Jia C; Chen HM; Xiao H; Li J; Huang Y; Liu B
    J Am Chem Soc; 2019 Feb; 141(7):3014-3023. PubMed ID: 30673269
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Timoshenko J; Roldan Cuenya B
    Chem Rev; 2021 Jan; 121(2):882-961. PubMed ID: 32986414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Active and Stable Amorphous Ir
    Ma CL; Yang XR; Wang ZQ; Sun W; Zhu L; Cao LM; Gong XQ; Yang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28706-28715. PubMed ID: 35695736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts.
    Genz NS; Kallio AJ; Oord R; Krumeich F; Pokle A; Prytz Ø; Olsbye U; Meirer F; Huotari S; Weckhuysen BM
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202209334. PubMed ID: 36205032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.
    Bernicke M; Ortel E; Reier T; Bergmann A; Ferreira de Araujo J; Strasser P; Kraehnert R
    ChemSusChem; 2015 Jun; 8(11):1908-15. PubMed ID: 25958795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando Photo-Electrochemical Catalysts Synchrotron Studies.
    Soldatov MA; Medvedev PV; Roldugin V; Novomlinskiy IN; Pankin I; Su H; Liu Q; Soldatov AV
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Oxygen Evolution Reaction Mechanism on CoO
    Favaro M; Yang J; Nappini S; Magnano E; Toma FM; Crumlin EJ; Yano J; Sharp ID
    J Am Chem Soc; 2017 Jul; 139(26):8960-8970. PubMed ID: 28598604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.