BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32369388)

  • 1. Comparison of MCNPX and MIRDcell in assessing self-dose and cross-dose delivered to cell nuclei and the development of a realistic geometric model.
    Hocine N; Chipana R; Sarda L
    Int J Radiat Biol; 2020 Aug; 96(8):1008-1016. PubMed ID: 32369388
    [No Abstract]   [Full Text] [Related]  

  • 2. Monte Carlo N-Particle (MCNP) Modeling of the Cellular Dosimetry of 64Cu: Comparison with MIRDcell S Values and Implications for Studies of Its Cytotoxic Effects.
    Cai Z; Kwon YL; Reilly RM
    J Nucl Med; 2017 Feb; 58(2):339-345. PubMed ID: 27660146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculations of the cellular S-values for α-particle-emitting radionuclides incorporated into the nuclei of cancer cells of the MDA-MB231, MCF7 and PC3 lines.
    Rojas-Calderón EL; Ávila O; Ferro-Flores G
    Appl Radiat Isot; 2018 May; 135():1-6. PubMed ID: 29353192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
    Hocine N; Farlay D; Boivin G; Franck D; Agarande M
    Int J Radiat Biol; 2014 Nov; 90(11):953-8. PubMed ID: 25134542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular dosimetry of [
    Tamborino G; De Saint-Hubert M; Struelens L; Seoane DC; Ruigrok EAM; Aerts A; van Cappellen WA; de Jong M; Konijnenberg MW; Nonnekens J
    EJNMMI Phys; 2020 Feb; 7(1):8. PubMed ID: 32040783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTC, 123I, 111In, 67Ga and 201T1.
    Faraggi M; Gardin I; Stievenart JL; Bok BD; Le Guludec D
    Eur J Nucl Med; 1998 Mar; 25(3):205-14. PubMed ID: 9580851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GATE simulation study for dosimetry in cancer cell and micrometastasis from the
    Koniar H; Miller C; Rahmim A; Schaffer P; Uribe C
    EJNMMI Phys; 2023 Aug; 10(1):46. PubMed ID: 37525027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry.
    Larsson E; Strand SE; Ljungberg M; Jönsson BA
    Cancer Biother Radiopharm; 2007 Jun; 22(3):438-42. PubMed ID: 17651052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular dosimetry of (111)In using monte carlo N-particle computer code: comparison with analytic methods and correlation with in vitro cytotoxicity.
    Cai Z; Pignol JP; Chan C; Reilly RM
    J Nucl Med; 2010 Mar; 51(3):462-70. PubMed ID: 20150261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast method for rescaling voxel S values for arbitrary voxel sizes in targeted radionuclide therapy from a single Monte Carlo calculation.
    Fernández M; Hänscheid H; Mauxion T; Bardiès M; Kletting P; Glatting G; Lassmann M
    Med Phys; 2013 Aug; 40(8):082502. PubMed ID: 23927347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.
    Lee D; Li M; Bednarz B; Schultz MK
    Radiat Res; 2018 Sep; 190(3):236-247. PubMed ID: 29944461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides.
    Goddu SM; Rao DV; Howell RW
    J Nucl Med; 1994 Mar; 35(3):521-30. PubMed ID: 8113908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIRD Pamphlet No. 27: MIRDcell V3, a Revised Software Tool for Multicellular Dosimetry and Bioeffect Modeling.
    Katugampola S; Wang J; Rosen A; Howell RW;
    J Nucl Med; 2022 Sep; 63(9):1441-1449. PubMed ID: 35145016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of modeling gold nanoparticles distribution in dose-enhanced radiotherapy.
    Rasouli FS; Masoudi SF; Asadi S
    Int J Nanomedicine; 2019; 14():5865-5874. PubMed ID: 31534328
    [No Abstract]   [Full Text] [Related]  

  • 19. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques.
    Grimes J; Celler A
    Med Phys; 2014 Sep; 41(9):092501. PubMed ID: 25186410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.