These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32369579)

  • 1. GM-DockZn: a geometry matching-based docking algorithm for zinc proteins.
    Wang K; Lyu N; Diao H; Jin S; Zeng T; Zhou Y; Wu R
    Bioinformatics; 2020 Jul; 36(13):4004-4011. PubMed ID: 32369579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy.
    Bai F; Liao S; Gu J; Jiang H; Wang X; Li H
    J Chem Inf Model; 2015 Apr; 55(4):833-47. PubMed ID: 25746437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods.
    Wang Z; Wang X; Li Y; Lei T; Wang E; Li D; Kang Y; Zhu F; Hou T
    Bioinformatics; 2019 May; 35(10):1777-1779. PubMed ID: 30329012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-docking benchmark for automated pose and ranking prediction of ligand binding.
    Wierbowski SD; Wingert BM; Zheng J; Camacho CJ
    Protein Sci; 2020 Jan; 29(1):298-305. PubMed ID: 31721338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry Optimization Algorithms in Conjunction with the Machine Learning Potential ANI-2x Facilitate the Structure-Based Virtual Screening and Binding Mode Prediction.
    Wang L; He X; Ji B; Han F; Niu T; Cai L; Zhai J; Hao D; Wang J
    Biomolecules; 2024 May; 14(6):. PubMed ID: 38927052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pose prediction approach based on ligand 3D shape similarity.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Jun; 30(6):457-69. PubMed ID: 27379501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins.
    Kurkcuoglu Z; Doruker P
    PLoS One; 2016; 11(6):e0158063. PubMed ID: 27348230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein docking with multiple residue conformations and residue substitutions.
    Lorber DM; Udo MK; Shoichet BK
    Protein Sci; 2002 Jun; 11(6):1393-408. PubMed ID: 12021438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials.
    Fine J; Konc J; Samudrala R; Chopra G
    J Chem Inf Model; 2020 Mar; 60(3):1509-1527. PubMed ID: 32069042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-ligand docking against non-native protein conformers.
    Verdonk ML; Mortenson PN; Hall RJ; Hartshorn MJ; Murray CW
    J Chem Inf Model; 2008 Nov; 48(11):2214-25. PubMed ID: 18954138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape.
    Basciu A; Malloci G; Pietrucci F; Bonvin AMJJ; Vargiu AV
    J Chem Inf Model; 2019 Apr; 59(4):1515-1528. PubMed ID: 30883122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.