BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32369620)

  • 1. Atmospheric CO
    Baca Cabrera JC; Hirl RT; Zhu J; Schäufele R; Schnyder H
    New Phytol; 2020 Sep; 227(6):1776-1789. PubMed ID: 32369620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.
    Engel VC; Griffin KL; Murthy R; Patterson L; Klimas C; Potosnak M
    Tree Physiol; 2004 Oct; 24(10):1137-45. PubMed ID: 15294760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf elongation response to blue light is mediated by stomatal-induced variations in transpiration in Festuca arundinacea.
    Barillot R; De Swaef T; Combes D; Durand JL; Escobar-Gutiérrez AJ; Martre P; Perrot C; Roy E; Frak E
    J Exp Bot; 2021 Mar; 72(7):2642-2656. PubMed ID: 33326568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.
    Zait Y; Shapira O; Schwartz A
    Plant Cell Environ; 2017 Jul; 40(7):1143-1152. PubMed ID: 28098339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.
    Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D
    Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination between vapor pressure deficit and CO
    Jiao XC; Song XM; Zhang DL; Du QJ; Li JM
    Sci Rep; 2019 Jun; 9(1):8700. PubMed ID: 31213627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying physiological and genetic determinants of faba bean transpiration response to evaporative demand.
    Mandour H; Khazaei H; Stoddard FL; Dodd IC
    Ann Bot; 2023 Apr; 131(3):533-544. PubMed ID: 36655613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotyping a Dynamic Trait: Leaf Growth of Perennial Ryegrass Under Water Limiting Conditions.
    Yates S; Jaškūnė K; Liebisch F; Nagelmüller S; Kirchgessner N; Kölliker R; Walter A; Brazauskas G; Studer B
    Front Plant Sci; 2019; 10():344. PubMed ID: 30967891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid-Insensitive Plants.
    Cernusak LA; Goldsmith GR; Arend M; Siegwolf RTW
    Plant Physiol; 2019 Dec; 181(4):1573-1586. PubMed ID: 31562233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.
    Ryan AC; Dodd IC; Rothwell SA; Jones R; Tardieu F; Draye X; Davies WJ
    Plant Sci; 2016 Oct; 251():101-109. PubMed ID: 27593468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2.
    Beechey-Gradwell Z; Cooney L; Winichayakul S; Andrews M; Hea SY; Crowther T; Roberts N
    J Exp Bot; 2020 Apr; 71(7):2351-2361. PubMed ID: 31679036
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Baca Cabrera JC; Hirl RT; Zhu J; Schäufele R; Ogée J; Schnyder H
    Plant Cell Environ; 2023 Sep; 46(9):2628-2648. PubMed ID: 37376738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric and soil drought reduce nocturnal conductance in live oaks.
    Cavender-Bares J; Sack L; Savage J
    Tree Physiol; 2007 Apr; 27(4):611-20. PubMed ID: 17242002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance.
    Lu Z; Hu W; Ye X; Lu J; Gu H; Li X; Cong R; Ren T
    J Exp Bot; 2022 Jun; 73(11):3686-3698. PubMed ID: 35176159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea.
    Belko N; Zaman-Allah M; Diop NN; Cisse N; Zombre G; Ehlers JD; Vadez V
    Plant Biol (Stuttg); 2013 Mar; 15(2):304-16. PubMed ID: 22823007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat.
    Ranawana SRWMCJK; Siddique KHM; Palta JA; Stefanova K; Bramley H
    Funct Plant Biol; 2021 Aug; 48(9):839-850. PubMed ID: 33934747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.