These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32369620)

  • 21. Further insights into the components of resistance to Ophiostoma novo-ulmi in Ulmus minor: hydraulic conductance, stomatal sensitivity and bark dehydration.
    Pita P; Rodríguez-Calcerrada J; Medel D; Gil L
    Tree Physiol; 2018 Feb; 38(2):252-262. PubMed ID: 29040781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.
    Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA
    Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants.
    Du Q; Jiao X; Song X; Zhang J; Bai P; Ding J; Li J
    Front Plant Sci; 2020; 11():758. PubMed ID: 32582267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits.
    Devi MJ; Taliercio EW; Sinclair TR
    J Exp Bot; 2015 Apr; 66(7):1845-50. PubMed ID: 25618144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not.
    Warren CR
    J Exp Bot; 2008; 59(2):327-34. PubMed ID: 18238801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions.
    Choudhary S; Guha A; Kholova J; Pandravada A; Messina CD; Cooper M; Vadez V
    Plant Sci; 2020 Jun; 295():110297. PubMed ID: 32534623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf- and stand-level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit.
    Barron-Gafford GA; Grieve KA; Murthy R
    New Phytol; 2007; 174(3):614-625. PubMed ID: 17447916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat.
    Sadok W; Schoppach R
    Ann Bot; 2019 Nov; 124(6):969-978. PubMed ID: 30918962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2.
    Bobich EG; Barron-Gafford GA; Rascher KG; Murthy R
    Tree Physiol; 2010 Jul; 30(7):866-75. PubMed ID: 20462939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?
    Aliniaeifard S; Malcolm Matamoros P; van Meeteren U
    Physiol Plant; 2014 Dec; 152(4):688-99. PubMed ID: 24773210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant responses to rising vapor pressure deficit.
    Grossiord C; Buckley TN; Cernusak LA; Novick KA; Poulter B; Siegwolf RTW; Sperry JS; McDowell NG
    New Phytol; 2020 Jun; 226(6):1550-1566. PubMed ID: 32064613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relating Stomatal Conductance to Leaf Functional Traits.
    Kröber W; Plath I; Heklau H; Bruelheide H
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-Term Exposure to High Atmospheric Vapor Pressure Deficit (VPD) Severely Impacts Durum Wheat Carbon and Nitrogen Metabolism in the Absence of Edaphic Water Stress.
    Fakhet D; Morales F; Jauregui I; Erice G; Aparicio-Tejo PM; González-Murua C; Aroca R; Irigoyen JJ; Aranjuelo I
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33435620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
    Fan DY; Dang QL; Xu CY; Jiang CD; Zhang WF; Xu XW; Yang XF; Zhang SR
    Front Plant Sci; 2020; 11():1248. PubMed ID: 32922423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake.
    Jiao X; Yu X; Yuan Y; Li J
    Plant Sci; 2022 Nov; 324():111448. PubMed ID: 36041564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species.
    Qie YD; Zhang QW; McAdam SAM; Cao KF
    Plant Divers; 2024 May; 46(3):395-405. PubMed ID: 38798723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High vapour pressure deficit exacerbates xylem cavitation and photoinhibition in shade-grown Piper auritum H.B. & K. during prolonged sunflecks : I. Dynamics of plant water relations.
    Schultz HR; Matthews MA
    Oecologia; 1997 Apr; 110(3):312-319. PubMed ID: 28307219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2014 Jan; 37(1):132-9. PubMed ID: 23701708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transpiration Response of Cotton to Vapor Pressure Deficit and Its Relationship With Stomatal Traits.
    Devi MJ; Reddy VR
    Front Plant Sci; 2018; 9():1572. PubMed ID: 30420866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.