These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 32369792)
1. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Jing Z; Zhang T; Xiu P; Cai H; Wei Q; Fan D; Lin X; Song C; Liu Z Biomed Mater; 2020 Aug; 15(5):052003. PubMed ID: 32369792 [TBL] [Abstract][Full Text] [Related]
2. [Research on Characterization and Biocompatibility of 3D Printed Ti-6Al-4V Pelvic Prosthesis]. Cai Y; Guo J; Fu B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 May; 48(3):257-263. PubMed ID: 38863090 [TBL] [Abstract][Full Text] [Related]
3. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102 [TBL] [Abstract][Full Text] [Related]
4. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. Xu J; Weng XJ; Wang X; Huang JZ; Zhang C; Muhammad H; Ma X; Liao QD PLoS One; 2013; 8(11):e79289. PubMed ID: 24260188 [TBL] [Abstract][Full Text] [Related]
5. Manufacturing a human heel in titanium via 3D printing. Barnes JE Med J Aust; 2015 Feb; 202(3):118. PubMed ID: 25669461 [No Abstract] [Full Text] [Related]
6. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
7. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268 [TBL] [Abstract][Full Text] [Related]
8. [Application and research progress of three-dimentional printed porous titanium alloy after tumor resection]. Liu P; Gao Q; Lü L; Zhang W; Fan B Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Dec; 36(12):1558-1565. PubMed ID: 36545866 [TBL] [Abstract][Full Text] [Related]
9. 3D‑printed Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis. Ye M; Liu W; Yan L; Cheng S; Li X; Qiao S Mol Med Rep; 2021 Jun; 23(6):. PubMed ID: 33786622 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of bone defect therapy involving various surface treatments of titanium alloy implants: an in vivo and in vitro study. Wang B; Guo Y; Xu J; Zeng F; Ren T; Guo W Sci Rep; 2023 Nov; 13(1):20116. PubMed ID: 37978333 [TBL] [Abstract][Full Text] [Related]
12. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects. Zhang RZ; Shi Q; Zhao H; Pan GQ; Shao LH; Wang JF; Liu HW J Biomater Appl; 2022 Nov; 37(5):942-958. PubMed ID: 35856165 [TBL] [Abstract][Full Text] [Related]
13. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Sheng X; Wang A; Wang Z; Liu H; Wang J; Li C Front Bioeng Biotechnol; 2022; 10():850110. PubMed ID: 35299643 [TBL] [Abstract][Full Text] [Related]
14. A 3D Printed Porous Titanium Alloy Rod with Diamond Crystal Lattice for Treatment of the Early-Stage Femoral Head Osteonecrosis in Sheep. Wang C; Liu D; Xie Q; Liu J; Deng S; Gong K; Huang C; Yin L; Xie M; Guo Z; Zheng W Int J Med Sci; 2019; 16(3):486-493. PubMed ID: 30911283 [TBL] [Abstract][Full Text] [Related]
15. Plasma Polishing as a New Polishing Option to Reduce the Surface Roughness of Porous Titanium Alloy for 3D Printing. Lin Z; Luo L; Lin D; Deng Y; Yang Y; Huang X; Wu T; Huang W J Vis Exp; 2023 Apr; (194):. PubMed ID: 37184273 [TBL] [Abstract][Full Text] [Related]
16. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
17. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611 [TBL] [Abstract][Full Text] [Related]
18. Does implantation site influence bone ingrowth into 3D-printed porous implants? Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790 [TBL] [Abstract][Full Text] [Related]
19. A preliminary study of the mechanical properties of 3D-printed personalized mesh titanium alloy prostheses and repair of hemi-mandibular defect in dogs. Zhao B; Wang H; Liu C; Liu H; Zhao X; Sun Z; Hu M J Biomed Mater Res B Appl Biomater; 2024 Sep; 112(9):e35466. PubMed ID: 39223742 [TBL] [Abstract][Full Text] [Related]
20. 3D finite element analysis of porous Ti-based alloy prostheses. Mircheski I; Gradišar M Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1531-40. PubMed ID: 27015664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]