BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3237003)

  • 1. Localization of long-chain fatty acids and unconventional sterols in spherulous cells of a marine sponge.
    Lawson MP; Thompson JE; Djerassi C
    Lipids; 1988 Nov; 23(11):1037-48. PubMed ID: 3237003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell membrane localization of sterols with conventional and unusual side chains in two marine demosponges.
    Lawson MP; Stoilov IL; Thompson JE; Djerassi C
    Lipids; 1988 Aug; 23(8):750-4. PubMed ID: 3185106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of lipids and sterols in cell types from the marine sponge Pseudaxinyssa sp.
    Zimmerman MP; Thomas FC; Thompson JE; Djerassi C; Streiner H; Evans E; Murphy PT
    Lipids; 1989 Mar; 24(3):210-6. PubMed ID: 2761353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membrane localization of long chain C24-C30 fatty acids in two marine demosponges.
    Lawson MP; Thompson JE; Djerassi C
    Lipids; 1988 Aug; 23(8):741-9. PubMed ID: 3185105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol carrier protein-2 expression alters plasma membrane lipid distribution and cholesterol dynamics.
    Gallegos AM; Atshaves BP; Storey SM; McIntosh AL; Petrescu AD; Schroeder F
    Biochemistry; 2001 May; 40(21):6493-506. PubMed ID: 11371213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell separation of Tethya aurantia, an analytical study of embryonic and differentiated sponge cells.
    Zimmerman MP; Hoberg M; Ayanoglu E; Djerassi C
    Lipids; 1990 Jul; 25(7):383-90. PubMed ID: 2395417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis.
    Garson MJ; Zimmermann MP; Battershill CN; Holden JL; Murphy PT
    Lipids; 1994 Jul; 29(7):509-16. PubMed ID: 7968273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of novel 2-hydroxy fatty acids from the phospholipids of the sponge Smenospongia aurea.
    Carballeira NM; Emiliano A; Rodriguez J; Reyes ED
    Lipids; 1992 Sep; 27(9):681-5. PubMed ID: 1487966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-detergent Isolation of Membrane Structures from Beet Plasmalemma and Tonoplast Having Lipid Composition Characteristic of Rafts.
    Ozolina NV; Nesterkina IS; Gurina VV; Nurminsky VN
    J Membr Biol; 2020 Oct; 253(5):479-489. PubMed ID: 32954443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane phospholipid alterations in response to sterol depletion of LM cells. Metabolic studies.
    Freter CE; Ladenson RC; Silbert DF
    J Biol Chem; 1979 Aug; 254(15):6909-16. PubMed ID: 457659
    [No Abstract]   [Full Text] [Related]  

  • 11. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.
    Chalbi N; Martínez-Ballesta MC; Youssef NB; Carvajal M
    J Plant Physiol; 2015 Mar; 175():148-56. PubMed ID: 25544590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.
    Takahashi D; Imai H; Kawamura Y; Uemura M
    Cryobiology; 2016 Apr; 72(2):123-34. PubMed ID: 26904981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholpid studies of marine organisms: 2.(1) Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)(2). Isolation and structure elucidation of unprecedented branched fatty acids.
    Walkup RD; Jamieson GC; Ratcliff MR; Djerassi C
    Lipids; 1981 Sep; 16(9):631-46. PubMed ID: 27519233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical studies of the excitable membrane of Paramecium tetraurelia. VII. Sterols and other neutral lipids of cells and cilia.
    Hennessey TM; Andrews D; Nelson DL
    J Lipid Res; 1983 May; 24(5):575-87. PubMed ID: 6875382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma and phagosome membranes of Acanthamoeba castellanii.
    Ulsamer AG; Wright PL; Wetzel MG; Korn ED
    J Cell Biol; 1971 Oct; 51(1):193-215. PubMed ID: 4329520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma membrane isolation and fatty acid analysis of membrane lipids from murine lymphocytes.
    Adams DA; Freauff SJ; Erickson KL
    Anal Biochem; 1985 Jan; 144(1):228-32. PubMed ID: 3985316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios.
    Bennett H; Bell JJ; Davy SK; Webster NS; Francis DS
    Glob Chang Biol; 2018 Jul; 24(7):3130-3144. PubMed ID: 29505691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots.
    Bohn M; Heinz E; Lüthje S
    Arch Biochem Biophys; 2001 Mar; 387(1):35-40. PubMed ID: 11368181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.
    Grillitsch K; Tarazona P; Klug L; Wriessnegger T; Zellnig G; Leitner E; Feussner I; Daum G
    Biochim Biophys Acta; 2014 Jul; 1838(7):1889-97. PubMed ID: 24680652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of sterol structure on yeast plasma membrane properties.
    Bottema CD; Rodriguez RJ; Parks LW
    Biochim Biophys Acta; 1985 Mar; 813(2):313-20. PubMed ID: 3882148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.