BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32370033)

  • 1. Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae.
    Riccio G; De Luca D; Lauritano C
    Mar Drugs; 2020 May; 18(5):. PubMed ID: 32370033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms.
    De Luca D; Lauritano C
    Biology (Basel); 2020 May; 9(5):. PubMed ID: 32456002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DGDG and Glycolipids in Plants and Algae.
    Kalisch B; Dörmann P; Hölzl G
    Subcell Biochem; 2016; 86():51-83. PubMed ID: 27023231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and functions of the plant sulfolipid.
    Shimojima M
    Prog Lipid Res; 2011 Jul; 50(3):234-9. PubMed ID: 21371504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.
    Yu B; Xu C; Benning C
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5732-7. PubMed ID: 11960029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monogalactosyldiacylglycerols with High PUFA Content From Microalgae for Value-Added Products.
    Junpeng J; Xupeng C; Miao Y; Song X
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1212-1223. PubMed ID: 31729697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes for sulfolipid synthesis in primitive red alga Cyanidioschyzon merolae.
    Sato N; Kobayashi S; Aoki M; Umemura T; Kobayashi I; Tsuzuki M
    Biochem Biophys Res Commun; 2016 Jan; 470(1):123-129. PubMed ID: 26768360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis.
    Essigmann B; Hespenheide BM; Kuhn LA; Benning C
    Arch Biochem Biophys; 1999 Sep; 369(1):30-41. PubMed ID: 10462438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal Enzymes with Biotechnological Applications.
    Vingiani GM; De Luca P; Ianora A; Dobson ADW; Lauritano C
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31387272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Arabidopsis SQD1 converts udp-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro.
    Sanda S; Leustek T; Theisen MJ; Garavito RM; Benning C
    J Biol Chem; 2001 Feb; 276(6):3941-6. PubMed ID: 11073956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine Natural Products from Microalgae: An -Omics Overview.
    Lauritano C; Ferrante MI; Rogato A
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31067655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory.
    Kwon YM; Kim KW; Choi TY; Kim SY; Kim JYH
    World J Microbiol Biotechnol; 2018 Nov; 34(12):183. PubMed ID: 30478596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferredoxin-dependent glutamate synthase moonlights in plant sulfolipid biosynthesis by forming a complex with SQD1.
    Shimojima M; Hoffmann-Benning S; Garavito RM; Benning C
    Arch Biochem Biophys; 2005 Apr; 436(1):206-14. PubMed ID: 15752726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation.
    Kobayashi K; Awai K; Nakamura M; Nagatani A; Masuda T; Ohta H
    Plant J; 2009 Jan; 57(2):322-31. PubMed ID: 18808455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis.
    Dolch LJ; Rak C; Perin G; Tourcier G; Broughton R; Leterrier M; Morosinotto T; Tellier F; Faure JD; Falconet D; Jouhet J; Sayanova O; Beaudoin F; Maréchal E
    Plant Physiol; 2017 Jan; 173(1):742-759. PubMed ID: 27895203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids.
    da Costa E; Silva J; Mendonça SH; Abreu MH; Domingues MR
    Mar Drugs; 2016 May; 14(5):. PubMed ID: 27213410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis mgd mutants with reduced monogalactosyldiacylglycerol contents are hypersensitive to aluminium stress.
    Liu C; Liu Y; Wang S; Ke Q; Yin L; Deng X; Feng B
    Ecotoxicol Environ Saf; 2020 Oct; 203():110999. PubMed ID: 32888604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea).
    Iglesias MJ; Soengas R; Probert I; Guilloud E; Gourvil P; Mehiri M; López Y; Cepas V; Gutiérrez-Del-Río I; Redondo-Blanco S; Villar CJ; Lombó F; Soto S; Ortiz FL
    Phytochemistry; 2019 Aug; 164():192-205. PubMed ID: 31174083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock.
    Zhu LD; Li ZH; Hiltunen E
    Biomed Res Int; 2016; 2016():8792548. PubMed ID: 27725942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.