These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32370083)
1. Study of the Incorporation of Biomass Bottom Ashes in Ceramic Materials for the Manufacture of Bricks and Evaluation of Their Leachates. Terrones-Saeta JM; Suárez-Macías J; Iglesias-Godino FJ; Corpas-Iglesias FA Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370083 [TBL] [Abstract][Full Text] [Related]
2. Development of Geopolymers as Substitutes for Traditional Ceramics for Bricks with Chamotte and Biomass Bottom Ash. Terrones-Saeta JM; Suárez-Macías J; Iglesias-Godino FJ; Corpas-Iglesias FA Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406596 [TBL] [Abstract][Full Text] [Related]
3. Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. Pérez-Villarejo L; Eliche-Quesada D; Iglesias-Godino FJ; Martínez-García C; Corpas-Iglesias FA J Environ Manage; 2012 Mar; 95 Suppl():S349-54. PubMed ID: 21071132 [TBL] [Abstract][Full Text] [Related]
4. Stabilization/solidification of ashes in clays used in the manufacturing of ceramic bricks. García-Ubaque CA; Moreno-Piraján JC; Giraldo-Gutierrez L; Sapag K Waste Manag Res; 2007 Aug; 25(4):352-62. PubMed ID: 17874662 [TBL] [Abstract][Full Text] [Related]
5. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks. Belmonte LJ; Ottosen LM; Kirkelund GM; Jensen PE; Vestbø AP Environ Sci Pollut Res Int; 2018 Nov; 25(33):32831-32843. PubMed ID: 27832436 [TBL] [Abstract][Full Text] [Related]
6. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material. Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855 [TBL] [Abstract][Full Text] [Related]
7. Fuzzy Logic Tools Application to the Characterization of Stress-Strain Processes in Waste Construction Dam Geopolymers: A New Circular Mining. Terrones-Saeta JM; Fortes JC; Luís AT; Aroba J; Díaz-Curiel J; Romero E; Grande JA Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556599 [TBL] [Abstract][Full Text] [Related]
8. Use of marble sludge waste in the manufacture of eco-friendly materials: applying the principles of the Circular Economy. Cobo-Ceacero CJ; Cotes-Palomino MT; Martínez-García C; Moreno-Maroto JM; Uceda-Rodríguez M Environ Sci Pollut Res Int; 2019 Dec; 26(35):35399-35410. PubMed ID: 31001783 [TBL] [Abstract][Full Text] [Related]
9. Reuse of walnut shell waste in the development of fired ceramic bricks. Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of expansive soils with biomass bottom ashes for an eco-efficient construction. Galvín AP; López-Uceda A; Cabrera M; Rosales J; Ayuso J Environ Sci Pollut Res Int; 2021 May; 28(19):24441-24454. PubMed ID: 32323241 [TBL] [Abstract][Full Text] [Related]
11. Treatment of Soil Contaminated by Mining Activities to Prevent Contamination by Encapsulation in Ceramic Construction Materials. Terrones-Saeta JM; Suárez-Macías J; Bernardo-Sánchez A; Álvarez de Prado L; Menéndez Fernández M; Corpas-Iglesias FA Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832142 [TBL] [Abstract][Full Text] [Related]
12. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Eliche-Quesada D; Leite-Costa J Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359 [TBL] [Abstract][Full Text] [Related]
13. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials-A Review. Cho BH; Nam BH; An J; Youn H Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679661 [TBL] [Abstract][Full Text] [Related]
14. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick. Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057 [TBL] [Abstract][Full Text] [Related]
15. Ternary diagrams as a tool for developing ceramic materials from waste: relationship between technological properties and microstructure. Galán-Arboledas RJ; Cotes-Palomino MT; Martínez-García C; Moreno-Maroto JM; Uceda-Rodríguez M; Bueno S Environ Sci Pollut Res Int; 2019 Dec; 26(35):35574-35587. PubMed ID: 31102224 [TBL] [Abstract][Full Text] [Related]
16. Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications. Abbass W; Abbas S; Aslam F; Ahmed A; Ahmed T; Hashir A; Mamdouh A Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683300 [TBL] [Abstract][Full Text] [Related]
17. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash. Chen C; Wu H Environ Technol; 2018 Jun; 39(11):1359-1367. PubMed ID: 28488931 [TBL] [Abstract][Full Text] [Related]
18. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse. Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275 [TBL] [Abstract][Full Text] [Related]
19. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Silva RV; de Brito J; Lynn CJ; Dhir RK Waste Manag; 2017 Oct; 68():207-220. PubMed ID: 28669495 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the Mechanical Properties of Structural Ceramics Made from Aggregate Washing Sludge and Manganese Mining Waste. Terrones-Saeta JM; Domínguez V; Ramos D; Romero E; Asensio-Lozano J Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]