These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32370282)
1. Enhanced Visualization of Retinal Microvasculature in Optical Coherence Tomography Angiography Imaging via Deep Learning. Kadomoto S; Uji A; Muraoka Y; Akagi T; Tsujikawa A J Clin Med; 2020 May; 9(5):. PubMed ID: 32370282 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Visualization of Retinal Microvasculature via Deep Learning on OCTA Image Quality. Xu Y; Su Y; Hua D; Heiduschka P; Zhang W; Cao T; Liu J; Ji Z; Eter N Dis Markers; 2021; 2021():1373362. PubMed ID: 34221184 [TBL] [Abstract][Full Text] [Related]
3. Impact of Multiple En Face Image Averaging on Quantitative Assessment from Optical Coherence Tomography Angiography Images. Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Sadda SR Ophthalmology; 2017 Jul; 124(7):944-952. PubMed ID: 28318637 [TBL] [Abstract][Full Text] [Related]
4. IMAGE EVALUATION OF ARTIFICIAL INTELLIGENCE-SUPPORTED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IMAGING USING OCT-A1 DEVICE IN DIABETIC RETINOPATHY. Kawai K; Uji A; Murakami T; Kadomoto S; Oritani Y; Dodo Y; Muraoka Y; Akagi T; Miyata M; Tsujikawa A Retina; 2021 Aug; 41(8):1730-1738. PubMed ID: 33395219 [TBL] [Abstract][Full Text] [Related]
5. Prevention of Image Quality Degradation in Wider Field Optical Coherence Tomography Angiography Images Via Image Averaging. Kawai K; Uji A; Miyazawa T; Yamada T; Amano Y; Miyagi S; Seo R; Miyata M; Kadomoto S; Tsujikawa A Transl Vis Sci Technol; 2021 Nov; 10(13):16. PubMed ID: 34767625 [TBL] [Abstract][Full Text] [Related]
6. Impact of integrated multiple image averaging on OCT angiography image quality and quantitative parameters. Lauermann JL; Xu Y; Heiduschka P; Treder M; Alten F; Eter N; Alnawaiseh M Graefes Arch Clin Exp Ophthalmol; 2019 Dec; 257(12):2623-2629. PubMed ID: 31630231 [TBL] [Abstract][Full Text] [Related]
7. Usefulness of Denoising Process to Depict Myopic Choroidal Neovascularisation Using a Single Optical Coherence Tomography Angiography Image. Sawai Y; Miyata M; Uji A; Ooto S; Tamura H; Ueda-Arakawa N; Muraoka Y; Miyake M; Takahashi A; Kawashima Y; Kadomoto S; Oritani Y; Kawai K; Yamashiro K; Tsujikawa A Sci Rep; 2020 Apr; 10(1):6172. PubMed ID: 32277172 [TBL] [Abstract][Full Text] [Related]
8. Retinal vascular metrics difference by comparison of two image acquisition modes using a novel OCT angiography prototype. Di Antonio L; Viggiano P; Ferro G; Toto L; D'Aloisio R; Porreca A; Di Nicola M; Mastropasqua R PLoS One; 2020; 15(12):e0243074. PubMed ID: 33259557 [TBL] [Abstract][Full Text] [Related]
9. The impact of serum BNP on retinal perfusion assessed by an AI-based denoising optical coherence tomography angiography in CHD patients. Wang J; Weng H; Qian Y; Wang Y; Wang L; Wang X; Zhang P; Wang Z Heliyon; 2024 Apr; 10(8):e29305. PubMed ID: 38655359 [TBL] [Abstract][Full Text] [Related]
10. Choroidal neovascularization imaging using multiple en face optical coherence tomography angiography image averaging. Murakawa S; Maruko I; Kawano T; Hasegawa T; Iida T Graefes Arch Clin Exp Ophthalmol; 2019 Jun; 257(6):1119-1125. PubMed ID: 30783783 [TBL] [Abstract][Full Text] [Related]
11. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging. Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Borrelli E; Sadda SR Acta Ophthalmol; 2018 Nov; 96(7):e820-e827. PubMed ID: 29855147 [TBL] [Abstract][Full Text] [Related]
13. DENOISING SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY VOLUMETRIC SCANS USING A DEEP LEARNING MODEL. Ledesma-Gil G; Mao Z; Liu J; Spaide RF Retina; 2022 Mar; 42(3):450-455. PubMed ID: 35175017 [TBL] [Abstract][Full Text] [Related]
14. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review. Ahmed H; Zhang Q; Donnan R; Alomainy A J Imaging; 2024 Apr; 10(4):. PubMed ID: 38667984 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of deep learning-based denoising model efficacy on optical coherence tomography images with different noise levels. Kirik F; Iskandarov F; Erturk KM; Ozdemir H Photodiagnosis Photodyn Ther; 2024 Feb; 45():103891. PubMed ID: 37949385 [TBL] [Abstract][Full Text] [Related]
16. Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation. Fan F; Zhang J; Zhu L; Ma Z; Zhu J J Biophotonics; 2021 Nov; 14(11):e202100171. PubMed ID: 34382744 [TBL] [Abstract][Full Text] [Related]
17. Quantifying Retinal Microvascular Changes in Uveitis Using Spectral-Domain Optical Coherence Tomography Angiography. Kim AY; Rodger DC; Shahidzadeh A; Chu Z; Koulisis N; Burkemper B; Jiang X; Pepple KL; Wang RK; Puliafito CA; Rao NA; Kashani AH Am J Ophthalmol; 2016 Nov; 171():101-112. PubMed ID: 27594138 [TBL] [Abstract][Full Text] [Related]
18. Choriocapillaris Imaging Using Multiple En Face Optical Coherence Tomography Angiography Image Averaging. Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Sadda SR JAMA Ophthalmol; 2017 Nov; 135(11):1197-1204. PubMed ID: 28983552 [TBL] [Abstract][Full Text] [Related]
19. A deep learning based pipeline for optical coherence tomography angiography. Liu X; Huang Z; Wang Z; Wen C; Jiang Z; Yu Z; Liu J; Liu G; Huang X; Maier A; Ren Q; Lu Y J Biophotonics; 2019 Oct; 12(10):e201900008. PubMed ID: 31168927 [TBL] [Abstract][Full Text] [Related]
20. Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy. Bayhaqi YA; Hamidi A; Canbaz F; Navarini AA; Cattin PC; Zam A IEEE Trans Med Imaging; 2022 Oct; 41(10):2615-2628. PubMed ID: 35442883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]