These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32370498)

  • 1. Finite Systems under Pressure: Assessing Volume Definition Models from Parallel-Tempering Monte Carlo Simulations.
    Vítek A; Arismendi-Arrieta DJ; Šarmanová M; Kalus R; Prosmiti R
    J Phys Chem A; 2020 May; 124(20):4036-4047. PubMed ID: 32370498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational investigations of the thermodynamic properties of size-selected water and Ar-water clusters: high-pressure transitions.
    Vítek A; Arismendi-Arrieta DJ; Rodríguez-Cantano R; Prosmiti R; Villarreal P; Kalus R; Delgado-Barrio G
    Phys Chem Chem Phys; 2015 Apr; 17(14):8792-801. PubMed ID: 25745673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel tempering Monte Carlo combined with clustering Euclidean metric analysis to study the thermodynamic stability of Lennard-Jones nanoclusters.
    Cezar HM; Rondina GG; Da Silva JL
    J Chem Phys; 2017 Feb; 146(6):064114. PubMed ID: 28201917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of water clusters under high pressures. A case study for (H2O)15 and (H2O)15CH4.
    Vítek A; Ofiala A; Kalus R
    Phys Chem Chem Phys; 2012 Nov; 14(44):15509-19. PubMed ID: 23072914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in free water nanoparticles. Theoretical modeling of [H2O]48 and [H2O]118.
    Vítek A; Kalus R
    Phys Chem Chem Phys; 2015 Apr; 17(16):10532-7. PubMed ID: 25804607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic Signatures of Structural Transitions and Dissociation of Charged Colloidal Clusters: A Parallel Tempering Monte Carlo Study.
    Prudente FV; Marques JMC
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cluster algorithm for Monte Carlo simulation at constant pressure.
    Almarza NG
    J Chem Phys; 2009 May; 130(18):184106. PubMed ID: 19449907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations in generalized isobaric-isothermal ensembles.
    Okumura H; Okamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026702. PubMed ID: 15447615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nested sampling of isobaric phase space for the direct evaluation of the isothermal-isobaric partition function of atomic systems.
    Wilson BA; Gelb LD; Nielsen SO
    J Chem Phys; 2015 Oct; 143(15):154108. PubMed ID: 26493898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transitions and dipole moment of water clusters (H2O)(n=4-100).
    Gelman-Constantin J; Carignano MA; Szleifer I; Marceca EJ; Corti HR
    J Chem Phys; 2010 Jul; 133(2):024506. PubMed ID: 20632762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin.
    Yamauchi M; Okumura H
    J Chem Phys; 2017 Nov; 147(18):184107. PubMed ID: 29141431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the melting point of hard spheres from direct coexistence simulation methods.
    Noya EG; Vega C; de Miguel E
    J Chem Phys; 2008 Apr; 128(15):154507. PubMed ID: 18433235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient parallel tempering for first-order phase transitions.
    Neuhaus T; Magiera MP; Hansmann UH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):045701. PubMed ID: 17995052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.
    Jin D; Coasne B
    Langmuir; 2017 Oct; 33(42):11217-11230. PubMed ID: 28793774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-temperature phase diagram for small Lennard-Jones clusters.
    Frantsuzov PA; Mandelshtam VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037102. PubMed ID: 16241615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hundred-Year-Old Experiment Re-evaluated: Accurate Ab Initio Monte Carlo Simulations of the Melting of Radon.
    Smits OR; Jerabek P; Pahl E; Schwerdtfeger P
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9961-9964. PubMed ID: 29896841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations.
    Dinpajooh M; Bai P; Allan DA; Siepmann JI
    J Chem Phys; 2015 Sep; 143(11):114113. PubMed ID: 26395693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.