These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32370643)
1. Ultraviolet Mutagenesis Coupled with Next-Generation Sequencing as a Method for Functional Interrogation of Powdery Mildew Genomes. Barsoum M; Kusch S; Frantzeskakis L; Schaffrath U; Panstruga R Mol Plant Microbe Interact; 2020 Aug; 33(8):1008-1021. PubMed ID: 32370643 [TBL] [Abstract][Full Text] [Related]
2. UV-C irradiation compromises conidial germination, formation of appressoria, and induces transcription of three putative photolyase genes in the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. Zhu M; Riederer M; Hildebrandt U Fungal Biol; 2019 Mar; 123(3):218-230. PubMed ID: 30798877 [TBL] [Abstract][Full Text] [Related]
3. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Schmidt SM; Kuhn H; Micali C; Liller C; Kwaaitaal M; Panstruga R Mol Plant Pathol; 2014 Aug; 15(6):535-49. PubMed ID: 24304971 [TBL] [Abstract][Full Text] [Related]
4. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. Frantzeskakis L; Kracher B; Kusch S; Yoshikawa-Maekawa M; Bauer S; Pedersen C; Spanu PD; Maekawa T; Schulze-Lefert P; Panstruga R BMC Genomics; 2018 May; 19(1):381. PubMed ID: 29788921 [TBL] [Abstract][Full Text] [Related]
5. Control of Blumeria graminis f. sp. hordei on Barley Leaves by Treatment with Fungi-Consuming Protist Isolates. Sacharow J; Salehi-Mobarakeh E; Ratering S; Imani J; Österreicher Cunha-Dupont A; Schnell S Curr Microbiol; 2023 Oct; 80(12):384. PubMed ID: 37872440 [TBL] [Abstract][Full Text] [Related]
6. Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Thomas SW; Rasmussen SW; Glaring MA; Rouster JA; Christiansen SK; Oliver RP Fungal Genet Biol; 2001 Aug; 33(3):195-211. PubMed ID: 11495576 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel genetic factors underlying the host-pathogen interaction between barley (Hordeum vulgare L.) and powdery mildew (Blumeria graminis f. sp. hordei). Pogoda M; Liu F; Douchkov D; Djamei A; Reif JC; Schweizer P; Schulthess AW PLoS One; 2020; 15(7):e0235565. PubMed ID: 32614894 [TBL] [Abstract][Full Text] [Related]
8. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Hacquard S; Kracher B; Maekawa T; Vernaldi S; Schulze-Lefert P; Ver Loren van Themaat E Proc Natl Acad Sci U S A; 2013 Jun; 110(24):E2219-28. PubMed ID: 23696672 [TBL] [Abstract][Full Text] [Related]
9. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Lu X; Kracher B; Saur IM; Bauer S; Ellwood SR; Wise R; Yaeno T; Maekawa T; Schulze-Lefert P Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6486-E6495. PubMed ID: 27702901 [TBL] [Abstract][Full Text] [Related]
10. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Spanu PD; Abbott JC; Amselem J; Burgis TA; Soanes DM; Stüber K; Ver Loren van Themaat E; Brown JK; Butcher SA; Gurr SJ; Lebrun MH; Ridout CJ; Schulze-Lefert P; Talbot NJ; Ahmadinejad N; Ametz C; Barton GR; Benjdia M; Bidzinski P; Bindschedler LV; Both M; Brewer MT; Cadle-Davidson L; Cadle-Davidson MM; Collemare J; Cramer R; Frenkel O; Godfrey D; Harriman J; Hoede C; King BC; Klages S; Kleemann J; Knoll D; Koti PS; Kreplak J; López-Ruiz FJ; Lu X; Maekawa T; Mahanil S; Micali C; Milgroom MG; Montana G; Noir S; O'Connell RJ; Oberhaensli S; Parlange F; Pedersen C; Quesneville H; Reinhardt R; Rott M; Sacristán S; Schmidt SM; Schön M; Skamnioti P; Sommer H; Stephens A; Takahara H; Thordal-Christensen H; Vigouroux M; Wessling R; Wicker T; Panstruga R Science; 2010 Dec; 330(6010):1543-6. PubMed ID: 21148392 [TBL] [Abstract][Full Text] [Related]
11. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei. Bindschedler LV; Burgis TA; Mills DJ; Ho JT; Cramer R; Spanu PD Mol Cell Proteomics; 2009 Oct; 8(10):2368-81. PubMed ID: 19602707 [TBL] [Abstract][Full Text] [Related]
13. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers. Pedersen C; Rasmussen SW; Giese H Fungal Genet Biol; 2002 Apr; 35(3):235-46. PubMed ID: 11929213 [TBL] [Abstract][Full Text] [Related]
14. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Backes G; Madsen LH; Jaiser H; Stougaard J; Herz M; Mohler V; Jahoor A Theor Appl Genet; 2003 Jan; 106(2):353-62. PubMed ID: 12582863 [TBL] [Abstract][Full Text] [Related]
20. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. Wu Y; Ma X; Pan Z; Kale SD; Song Y; King H; Zhang Q; Presley C; Deng X; Wei CI; Xiao S BMC Genomics; 2018 Sep; 19(1):705. PubMed ID: 30253736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]