BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 32370748)

  • 1. Regulation of efferocytosis as a novel cancer therapy.
    Zhou Y; Yao Y; Deng Y; Shao A
    Cell Commun Signal; 2020 May; 18(1):71. PubMed ID: 32370748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efferocytosis and the Story of "Find Me," "Eat Me," and "Don't Eat Me" Signaling in the Tumor Microenvironment.
    Banerjee HN; Bartlett V; Krauss C; Aurelius C; Johnston K; Hedley J; Verma M
    Adv Exp Med Biol; 2021; 1329():153-162. PubMed ID: 34664238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms.
    Tajbakhsh A; Rezaee M; Kovanen PT; Sahebkar A
    Pharmacol Ther; 2018 Aug; 188():12-25. PubMed ID: 29444453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferocytosis: molecular mechanisms and pathophysiological perspectives.
    Gheibi Hayat SM; Bianconi V; Pirro M; Sahebkar A
    Immunol Cell Biol; 2019 Feb; 97(2):124-133. PubMed ID: 30230022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complex roles of efferocytosis in cancer development, metastasis, and treatment.
    Tajbakhsh A; Gheibi Hayat SM; Movahedpour A; Savardashtaki A; Loveless R; Barreto GE; Teng Y; Sahebkar A
    Biomed Pharmacother; 2021 Aug; 140():111776. PubMed ID: 34062411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease.
    Kelley SM; Ravichandran KS
    EMBO Rep; 2021 Jun; 22(6):e52564. PubMed ID: 34041845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Immune Response to Tumor Cell Apoptosis and Efferocytosis.
    Werfel TA
    Methods Mol Biol; 2022; 2543():45-55. PubMed ID: 36087258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions.
    Roy S; Bag AK; Dutta S; Polavaram NS; Islam R; Schellenburg S; Banwait J; Guda C; Ran S; Hollingsworth MA; Singh RK; Talmadge JE; Muders MH; Batra SK; Datta K
    Cancer Res; 2018 Oct; 78(19):5600-5617. PubMed ID: 30111533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Don't eat me/eat me signals as a novel strategy in cancer immunotherapy.
    Khalaji A; Yancheshmeh FB; Farham F; Khorram A; Sheshbolouki S; Zokaei M; Vatankhah F; Soleymani-Goloujeh M
    Heliyon; 2023 Oct; 9(10):e20507. PubMed ID: 37822610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efferocytosis of vascular cells in cardiovascular disease.
    Cabrera JTO; Makino A
    Pharmacol Ther; 2022 Jan; 229():107919. PubMed ID: 34171333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efferocytosis Nanoinhibitors to Promote Secondary Necrosis and Potentiate the Immunogenicity of Conventional Cancer Therapies for Improved Therapeutic Benefits.
    Wu Y; Wang C; Yan Y; Hao Y; Liu B; Dong Z; Chen M; Zhu Y; Liu N; Feng L; Liu Z
    ACS Nano; 2023 Sep; 17(18):18089-18102. PubMed ID: 37669546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efferocytosis: a double-edged sword in microbial immunity.
    Mohammad-Rafiei F; Moadab F; Mahmoudi A; Navashenaq JG; Gheibihayat SM
    Arch Microbiol; 2023 Nov; 205(12):370. PubMed ID: 37925389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Acquired and Endogenous Glycocalyx Forms a Bidirectional "Don't Eat" and "Don't Eat Me" Barrier to Phagocytosis.
    Imbert PRC; Saric A; Pedram K; Bertozzi CR; Grinstein S; Freeman SA
    Curr Biol; 2021 Jan; 31(1):77-89.e5. PubMed ID: 33096038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The walking dead: macrophage inflammation and death in atherosclerosis.
    Kavurma MM; Rayner KJ; Karunakaran D
    Curr Opin Lipidol; 2017 Apr; 28(2):91-98. PubMed ID: 28134664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
    Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y
    MAbs; 2018; 10(2):315-324. PubMed ID: 29182441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
    Werfel TA; Elion DL; Rahman B; Hicks DJ; Sanchez V; Gonzales-Ericsson PI; Nixon MJ; James JL; Balko JM; Scherle PA; Koblish HK; Cook RS
    Cancer Res; 2019 Jan; 79(1):171-182. PubMed ID: 30413412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention.
    Zhou X; Liu X; Huang L
    Adv Funct Mater; 2021 Jan; 31(5):. PubMed ID: 33692665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy.
    Gadiyar V; Lahey KC; Calianese D; Devoe C; Mehta D; Bono K; Desind S; Davra V; Birge RB
    Cells; 2020 Sep; 9(10):. PubMed ID: 33003477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review.
    Lecoultre M; Dutoit V; Walker PR
    J Immunother Cancer; 2020 Dec; 8(2):. PubMed ID: 33335026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
    Schürch CM; Roelli MA; Forster S; Wasmer MH; Brühl F; Maire RS; Di Pancrazio S; Ruepp MD; Giger R; Perren A; Schmitt AM; Krebs P; Charles RP; Dettmer MS
    Thyroid; 2019 Jul; 29(7):979-992. PubMed ID: 30938231
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.