These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 32370748)

  • 21. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy.
    Schürch CM; Roelli MA; Forster S; Wasmer MH; Brühl F; Maire RS; Di Pancrazio S; Ruepp MD; Giger R; Perren A; Schmitt AM; Krebs P; Charles RP; Dettmer MS
    Thyroid; 2019 Jul; 29(7):979-992. PubMed ID: 30938231
    [No Abstract]   [Full Text] [Related]  

  • 22. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment.
    Kumar S; Calianese D; Birge RB
    Immunol Rev; 2017 Nov; 280(1):149-164. PubMed ID: 29027226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efferocytosis of Pathogen-Infected Cells.
    Karaji N; Sattentau QJ
    Front Immunol; 2017; 8():1863. PubMed ID: 29312342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phagocytosis of Apoptotic Cells in Resolution of Inflammation.
    Kourtzelis I; Hajishengallis G; Chavakis T
    Front Immunol; 2020; 11():553. PubMed ID: 32296442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity.
    Xiao L; Zhang L; Guo C; Xin Q; Gu X; Jiang C; Wu J
    Cancer Commun (Lond); 2024 Jun; ():. PubMed ID: 38923737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macrophage efferocytosis in atherosclerosis.
    Baraniecki Ł; Tokarz-Deptuła B; Syrenicz A; Deptuła W
    Scand J Immunol; 2023 May; 97(5):e13251. PubMed ID: 36583598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efferocytosis in lung mucosae: implications for health and disease.
    Guimarães-Pinto K; Maia EP; Ferreira JRM; Filardy AA
    Immunol Lett; 2022 Aug; 248():109-118. PubMed ID: 35843361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy.
    Mahmoudi A; Moadab F; Safdarian E; Navashenaq JG; Rezaee M; Gheibihayat SM
    Mini Rev Med Chem; 2022; 22(20):2641-2660. PubMed ID: 35362375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of nuclear factors as "Find-Me"/alarmin signals and immunostimulation in defective efferocytosis and related disorders.
    Tajbakhsh A; Rezaee M; Barreto GE; Moallem SA; Henney NC; Sahebkar A
    Int Immunopharmacol; 2020 Mar; 80():106134. PubMed ID: 31931365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis.
    Purnama CA; Meiliana A; Barliana MI; Lestari K
    Cell Div; 2023 Apr; 18(1):5. PubMed ID: 37032375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting Phagocytic Checkpoints in Nanomedicine: Applications in Imaging and Combination Therapies.
    Landry MR; Walker JM; Sun C
    Front Chem; 2021; 9():642530. PubMed ID: 33748077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Don't eat me/eat me"-combined apoptotic body analogues for efficient targeted therapy of triple-negative breast cancer.
    Zhang K; Fu H; Xing C; Luo Y; Cheng F; Fu Q; Huang Y; Qiu L
    J Mater Chem B; 2021 Oct; 9(40):8472-8479. PubMed ID: 34550154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An antitumor peptide RS17-targeted CD47, design, synthesis, and antitumor activity.
    Wang X; Wang Y; Hu J; Xu H
    Cancer Med; 2021 Mar; 10(6):2125-2136. PubMed ID: 33629544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucocorticoids enhance prolonged clearance of apoptotic cells by upregulating liver X receptor, peroxisome proliferator-activated receptor-δ and UCP2.
    Garabuczi É; Sarang Z; Szondy Z
    Biochim Biophys Acta; 2015 Mar; 1853(3):573-82. PubMed ID: 25523142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MHC class I-LILRB1 signalling axis as a promising target in cancer therapy.
    Zhao J; Zhong S; Niu X; Jiang J; Zhang R; Li Q
    Scand J Immunol; 2019 Nov; 90(5):e12804. PubMed ID: 31267559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of AO-176, a Next-Generation Humanized Anti-CD47 Antibody with Novel Anticancer Properties and Negligible Red Blood Cell Binding.
    Puro RJ; Bouchlaka MN; Hiebsch RR; Capoccia BJ; Donio MJ; Manning PT; Frazier WA; Karr RW; Pereira DS
    Mol Cancer Ther; 2020 Mar; 19(3):835-846. PubMed ID: 31879362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Restoration of miR-340 controls pancreatic cancer cell
    Xi Q; Zhang J; Yang G; Zhang L; Chen Y; Wang C; Zhang Z; Guo X; Zhao J; Xue Z; Li Y; Zhang Q; Da Y; Liu L; Yao Z; Zhang R
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32503944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The TRIM28/miR133a/CD47 axis acts as a potential therapeutic target in pancreatic necrosis by impairing efferocytosis.
    Zhu Q; Yuan C; Wang D; Tu B; Chen W; Dong X; Wu K; Tao L; Ding Y; Xiao W; Hu L; Gong W; Li Z; Lu G
    Mol Ther; 2024 Jun; ():. PubMed ID: 38872307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy.
    Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T
    Life Sci; 2021 May; 273():119150. PubMed ID: 33662426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation.
    Nishi C; Yanagihashi Y; Segawa K; Nagata S
    J Biol Chem; 2019 May; 294(18):7221-7230. PubMed ID: 30846565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.