These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 32370833)

  • 21. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial.
    Schück A; Labruyère R; Vallery H; Riener R; Duschau-Wicke A
    J Neuroeng Rehabil; 2012 May; 9():31. PubMed ID: 22650320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons.
    Stampacchia G; Rustici A; Bigazzi S; Gerini A; Tombini T; Mazzoleni S
    NeuroRehabilitation; 2016 Jun; 39(2):277-83. PubMed ID: 27372363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury.
    McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C
    Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overground Robotic Program Preserves Gait in Individuals With Multiple Sclerosis and Moderate to Severe Impairments: A Randomized Controlled Trial.
    Berriozabalgoitia R; Bidaurrazaga-Letona I; Otxoa E; Urquiza M; Irazusta J; Rodriguez-Larrad A
    Arch Phys Med Rehabil; 2021 May; 102(5):932-939. PubMed ID: 33316225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial.
    Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J;
    Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of robot-assisted gait training on gait automaticity in Parkinson disease: A prospective, open-label, single-arm, pilot study.
    Yun SJ; Lee HH; Lee WH; Lee SH; Oh BM; Seo HG
    Medicine (Baltimore); 2021 Feb; 100(5):e24348. PubMed ID: 33592882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review.
    Nam KY; Kim HJ; Kwon BS; Park JW; Lee HJ; Yoo A
    J Neuroeng Rehabil; 2017 Mar; 14(1):24. PubMed ID: 28330471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study.
    van Silfhout L; Váňa Z; Pĕtioký J; Edwards MJR; Bartels RHMA; van de Meent H; Hosman AJF
    Acta Neurochir (Wien); 2020 Apr; 162(4):951-956. PubMed ID: 31873795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study.
    Rupp R; Schließmann D; Plewa H; Schuld C; Gerner HJ; Weidner N; Hofer EP; Knestel M
    PLoS One; 2015; 10(3):e0119167. PubMed ID: 25803577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.
    Tsukahara A; Hasegawa Y; Eguchi K; Sankai Y
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):308-18. PubMed ID: 25350933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exoskeleton-based exercises for overground gait and balance rehabilitation in spinal cord injury: a systematic review of dose and dosage parameters.
    Nepomuceno P; Souza WH; Pakosh M; Musselman KE; Craven BC
    J Neuroeng Rehabil; 2024 May; 21(1):73. PubMed ID: 38705999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 39. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.